How important is bulk viscosity in neutron star mergers?

Prof. Mark Alford Washington University in St. Louis

Alford, Bovard, Hanauske, Rezzolla, Schwenzer arXiv:1707.09475

Alford, Harutyunyan, Sedrakian, arXiv:1907.04192

Alford and Harris, arXiv:1907.03795

Outline

Neutron star mergers

- Beta equilibration in nuclear matter
 Urca processes
 The neutrino-transparent regime: T \le 5 MeV
- Damping time for density oscillations Bulk viscosity Resonance between equilibration and oscillation
- Summary and future prospects

Conjectured QCD Phase diagram

We want to know the properties of matter under extreme conditions

heavy ion collisions: deconfinement crossover and chiral critical point neutron stars: quark matter core? neutron star mergers: dynamics of warm and dense matter

Neutron star mergers

Mergers probe the properties of nuclear/quark matter at high density (up to $\sim 4 n_{\rm sat}$) and temperature (up to $\sim 60\,{\rm MeV}$)

Nuclear material in a neutron star merger

Significant spatial/temporal variation in: temperature fluid flow velocity density

so we need to allow for thermal conductivity shear viscositv bulk viscosity

Role of transport in mergers

The important dissipation mechanisms are the ones whose equilibration time is in the 10-30 ms range

Thermal equilibration: If neutrinos are trapped, and there are short-distance temperature gradients then thermal transport might be fast enough to play a role.

$$\tau_{\kappa}^{(\nu)} \approx 700 \,\mathrm{ms} \, \left(\frac{z_{\mathrm{typ}}}{1 \,\mathrm{km}}\right)^2 \left(\frac{T}{10 \,\mathrm{MeV}}\right)^2 \left(\frac{0.1}{x_p}\right)^{1/3} \left(\frac{m_n^*}{0.8 \,m_n}\right)^3 \left(\frac{\mu_e}{2\mu_\nu}\right)^2$$

Shear viscosity: similar conclusion.

Bulk viscosity:

could damp density oscillations on the same timescale as the merger!

(Alford, Bovard, Hanauske, Rezzolla, Schwenzer, arXiv:1707.09475)

Density oscillations in mergers

How long does it take for bulk viscosity to dissipate a sizeable fraction of the energy of a density oscillation?

What is the damping time τ_{ζ} ?

Density oscillation damping time au_{ζ}

Density oscillation of amplitude Δn at angular freq ω :

 $n(t) = \bar{n} + \Delta n \cos(\omega t)$

Energy of density oscillation: (K = nuclear incompressibility) $E_{
m comp} = rac{K}{18} ar{n} \left(rac{\Delta n}{ar{n}}
ight)^2$

Compression dissipation rate:

$$W_{\rm comp} = \zeta \frac{\omega^2}{2} \left(\frac{\Delta n}{\bar{n}} \right)^2$$

Damping Time:
$$au_{\zeta} = rac{E_{\mathrm{comp}}}{W_{\mathrm{comp}}} = rac{K ar{n}}{9 \omega^2 \zeta}$$

Bulk visc is important if $\tau_{\zeta} \lesssim 20 \, \text{ms}$

Damping time results

We studied two eqns of state:

At $T \sim 3$ MeV, some EoS give $\tau_{\zeta} \lesssim 20$ ms

Damping time behavior

Damping Time
$$\tau_{\zeta} = \frac{K\bar{n}}{9\omega^2\,\zeta}$$

Characteristics of the damping time plot:

- Non-monotonic *T*-dependence: damping is fastest at *T* ~ 3 MeV.
 Damping is slow at very low or very high temperature.
 Non-monotonic dependence of bulk viscosity on temperature
- ▶ Damping gets slower at higher density. Baryon density n
 and incompressibility K are both increasing. Oscillations carry more energy ⇒ slower to damp

Nuclear material constituents

We will focus on the neutrino-transparent regime, $T \lesssim 5 \,\text{MeV}$

neutrons: $\sim 90\%$ of baryons protons: $\sim 10\%$ of baryons electrons: same density as protons $p_{Fe} = p_{Fp}$ neutrinos: only present if mfp $\leq 1 \, \text{km}$ i.e. when $T \geq 5 \, \text{MeV}$

 $p_{Fn} \sim 350 \,\mathrm{MeV}$ $p_{Fp} \sim 150 \,\mathrm{MeV}$

Bulk viscosity and beta equilibration

- When you compress nuclear matter, the proton fraction wants to change.
- Weak interactions convert $n \leftrightarrow p$ to establish the new proton fraction

Beta equilibration is slow Delayed response to compression \Rightarrow bulk viscosity

Bulk viscosity: phase lag in system response

Proton fraction takes time to equilibrate.

Baryon density n and hence fluid element volume V gets out of phase with applied pressure p:

Bulk viscosity: a resonant phenomenon

Bulk viscosity is maximum when

(internal equilibration rate)

(freq of density oscillation)
$$\omega$$

$$\zeta = C \frac{\gamma}{\gamma^2 + \omega^2}$$

C is a combination of susceptibilities

Fast equilibration: $\gamma \to \infty$, $\zeta \to 0$ System is always in equilibrium. No pressure-density phase lag.

Slow equilibration: γ → 0, ζ → 0.
 System does not try to equilibrate: proton number and neutron number are both conserved. Proton fraction fixed.

Maximum phase lag when $\omega = \gamma$.

Resonant peak in bulk viscosity

So now we see why bulk viscosity has a non-monotonic dependence on temperature.

Beta equilibration rate γ is sensitive to temperature (phase space at Fermi surface)

Maximum bulk viscosity in a neutron star merger will be when beta equilibration rate $\gamma\sim 2\pi\times 1\,\rm kHz$

Do we get \(\gamma(n_B, T) \cap 2\pi \, kHz\) at the densities and temperatures of a neutron star merger?

▶ Is the prefactor *C* big enough to yield damping on the timescale of a merger, $\tau_\eta \lesssim 20 \, {\rm ms}$?

Subtleties in beta equilibration

Beta equilibration in neutrino-transparent matter is via "Urca" processes

neutron decay: $n \rightarrow p + e^- + \bar{\nu}_e$, electron capture: $p + e^- \rightarrow n + \nu_e$.

Standard calculations use the "Fermi Surface approximation": rate is dominated by particles close to their Fermi surfaces (except ν). At $T \gtrsim 1 \text{ MeV}$, Fermi Surface approximation breaks down. (Proton Fermi energy is $E_F \sim 10 \text{ MeV}$).

- 1. In FS approx there is a sharp distinction between "direct Urca" and "modified Urca". At $\mathcal{T}\gtrsim 1\,\text{MeV}$ this distinction breaks down.
- **2.** In the FS approx, neutrino energy is negligible and beta process is in equilibrium when

$$\mu_n = \mu_p + \mu_e$$

but at $T\gtrsim 1\,{\rm MeV}$ this is no longer valid.

But what about detailed balance? The two processes that equilibrate are not inverses of each other so detailed balance need not hold.

Beta equilibration: Urca processes

Traditionally, sharp separation between direct and modified Urca

"direct Urca threshold" density

But at $T \gtrsim 1 \,\text{MeV}$, d-Urca and m-Urca blur together

Beyond the Fermi Surface approx

Fermi Surface Approximation

Standard calculations assume only states close to the Fermi surface contribute ($T \ll E_F$). This gives a sharp "switch-on" of direct Urca at a threshold density..

But for protons, $E_F \sim 10 \text{ MeV}$ so at $T \gtrsim 1 \text{ MeV}$ the proton Fermi surface is thermally blurred, smoothing out the appearance of direct Urca.

Alford & Harris, arXiv:1803.00662

Damping time

The damping time for density oscillations is shortest around $\mathcal{T}\sim 3\,\text{MeV},$ independent of the EoS.

It is short enough to be relevant for neutron star mergers, especially at low density $n \sim 0.5 n_{\rm sat}$, or at $n \sim 2 n_{\rm sat}$ for the softer IUFSU EoS.

Fermi Surface Approx

FS approx exaggerates the sharpness of the onset of direct Urca (IUFSU, at $n = 4n_{sat}$)

Higher frequency oscillations

If 3 kHz oscillations occur then they would be damped even faster.

Note that max damping occurs at a slightly higher temperature, to get the beta equilibration rate to match the higher oscillation frequency.

Summary

- Bulk viscosity may be physically important for neutron star mergers.
- At millisecond time scales, bulk viscosity arises from equilibration of the proton fraction via weak interactions.
- ▶ In non- ν -trapped nuclear matter ($T \lesssim 5 \text{ MeV}$) the damping time for density oscillations is shortest around $T \sim 3 \text{ MeV}$, independent of the EoS
- To do the calculation properly we have to do the full phase space integral for the weak interactions that equilibrate proton fraction. The Fermi Surface approximation is not valid.

The Future

- Calculate bulk visc in the neutrino trapped regime Alford, Harutyunyan, Sedrakian, arXiv:1907.04192
- Understand neutrino trapping: At what temp/densities can we treat neutrinos as free-streaming? At what temp/densities can we treat neutrinos as trapped? What should we do in between?
- Bulk visc in hyperonic matter, nuclear pasta, quark matter, etc
- Suprathermal (high-amplitude) bulk viscosity
- Numerical simulations incorporating bulk viscosity
- Are there short-range gradients (z_{typ} ~ 0.1 km) that would lead to rapid shear viscous or thermal equilibration?
- Explore the role of dissipation in the collapse of a single star to a denser "third family" or "twin star" configuration
- Could axions play a role in mergers?

Cooling by axion emission

Time for a hot region to cool to half its original temperature

Alford, Fortin, Harris, Kuver, work in progress

Extra slides

When can Direct Urca happen?

 $n \rightarrow p \ e^- \ \bar{\nu}_e$, $p \ e^- \rightarrow n \ \nu_e$

For ${\cal T}=0$ and the case of no neutrino trapping $(\mu_
u=0)$

 $ec{p_n} = ec{p_p} + ec{p_e}$ is possible because $p_{Fn} < p_{Fp} + p_{Fe}$

Low proton fraction: Direct Urca closed

 $ec{p}_n = ec{p}_p + ec{p}_e$ is impossible because $p_{Fn} > p_{Fp} + p_{Fe}$