Formulations of the Einstein equations for spacetime evolutions

Carsten Gundlach

Mathematical Sciences University of Southampton

Relativistic Fluid Dynamics, Southampton, 17 July 2019

C. Gundlach Nu

Numerical relativity

□ ▶ < <
 □ ▶ <
 □ ■

∃ → < ∃ → 1 / 23

Overview

- 10 Einstein equations $G_{\mu\nu} = 8\pi T_{\mu\nu}$: second-order nonlinear PDEs for 10 metric coefficients $g_{\mu\nu}$
- Gauge freedom: 4 functions of 4 variables $x^{\mu}
 ightarrow { ilde x}^{\mu}(x^{
 u})$
- Why 2 polarisations of gravitational waves? Why wave equations?
- Initial data and their time evolution?
- Well-posed PDE problems?
- Notation (Wald): V^a an abstract vector, V^μ its components in coordinates x^μ := (t, xⁱ), i = 1, 2, 3
 a ~ b means "something like"

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

Time slices and their normal vector n^a

- Time slice t = const has 3 tangent vectors $\partial/\partial x^i$
- Vector *n*^a normal to time slice is defined by

$$\left(\frac{\partial}{\partial x^{i}}\right)^{a}n_{a}:=0 \quad \Rightarrow \quad n_{i}=0$$

- A vector X^a is purely spatial if $X^a n_a = 0$, hence if $X^0 = 0$.
- Recall $\partial/\partial t$ means "change t, keep x^i constant"

$$\left(\frac{\partial}{\partial t}\right)^{a} = \alpha n^{a} + b^{a}, \qquad n_{a}b^{a} := 0 \quad \Rightarrow \quad b^{0} = 0$$

• n^a is defined to be future-pointing and unit length

$$n_a n^a := -1 \quad \Rightarrow \quad \left(\frac{\partial}{\partial t}\right)^a n_a = n_0 = -\alpha$$

Lapse and shift

- Starting from a point coordinates (t, xⁱ), the geometrical location of the point with coordinates (t + Δt, xⁱ) is determined by the lapse α and shift vector bⁱ
- Vice versa, starting from an initial slice t = 0 with coordinates xⁱ, the coordinate system on spacetime is constructed along with the spacetime by choosing α and bⁱ

The spatial metric as a projection operator

 The 3-metric h_{ab} of a slice of constant t can be defined geometrically in terms of n^a and the spacetime metric g_{ab}:

$$h_{ab} := g_{ab} + n_a n_b \quad \Rightarrow \quad h_{ab} n^b = 0, \quad h_a{}^b h_b{}^c = h_a{}^c$$

- Hence $h_a{}^b X^a = g_a{}^b X^a = X^b$ for spatial vectors, and so we can raise and lower indices for spatial vectors with h_{ab}
- We have

$$h^{ab}n_b = 0 \quad \Rightarrow \quad h^{0i} = h^{i0} = h^{00} = 0$$

and so we define $\gamma^{ij}:=h^{ij},$ then γ_{ij} as the matrix inverse of $\gamma^{ij}.$

• Recall $b^0 = 0$ and we define $\beta^i := b^i$ and then $\beta_i := \gamma_{ij}\beta^j$.

5/23

3+1 split of the 4-dimensional metric

We now have all the definitions to calculate

$$g_{00} = -\alpha^2 + \beta_i \beta^i, \quad g_{0i} = \beta_i, \quad g_{ij} = \gamma_{ij}$$

or in line element form

$$ds^2 = -lpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt)$$

The inverse spacetime metric is

$$\mathbf{g}^{00} = -\alpha^{-2}, \quad \mathbf{g}^{0i} = \alpha^{-2}\beta^i, \quad \mathbf{g}^{ij} = \gamma^{ij} - \alpha^{-2}\beta^i\beta^j$$

Exercises: Check this against our definitions. Check $g_{\mu\nu}g^{\nu\lambda} = \delta_{\mu}{}^{\lambda}$. Calculate $h_{\mu\nu}$, $h^{\mu\nu}$, $h_{\mu}{}^{\nu}$, n^{μ} , b_{μ} , X_{μ} .

> = のへの

The extrinsic curvature

• We could write the wave equation (in Minkowski spacetime) $\phi_{,tt} = \Delta \phi$ in first-order in time form as

$$\phi_{,t} =: \Pi, \qquad \Pi_{,t} = \Delta \phi$$

- The GR equivalent of ϕ is the 3-metric γ_{ij}
- The equivalent of Π is the extrinsic curvature K_{ij}
 Geometric definition (there are two conventions for the sign):

$$2K_{ab} := \mathcal{L}_n h_{ab} \quad \Rightarrow \quad K_{ab} = h_a{}^c \nabla_c n_b, \quad K_{ab} = K_{ba}, \quad K_{ab} n^b = 0,$$

(exercise) so K_{ab} is a symmetric spatial tensor like h_{ab}

• In synchronous gauge $\alpha = 1$, $\beta^i = 0$ where $n^a = (\partial/\partial t)^a$

C. Gundlach

$$2K_{ij} = \mathcal{L}_{\frac{\partial}{\partial t}}\gamma_{ij} = \gamma_{ij,t}$$

• In general gauge (exercise)

$$\gamma_{ij,t} = 2\alpha K_{ij} + \beta^k \gamma_{ij,k} + \gamma_{ik} \beta^k_{j,i} + \gamma_{jk} \beta^k_{j,i} + \gamma_{ik} \beta^k_$$

7/23

Numerical relativity

3+1 split of the Einstein equations

Split the Einstein equations $E_{ab} := G_{ab} - 8\pi T_{ab}$ into

• time part E^{00} (Hamiltonian constraint) ($K := K_i^i$)

$$H := {}^{(3)}R^{i}{}_{i} + K - K_{ij}K^{ij} - 16\pi\rho = 0$$

• mixed part E_i^0 (momentum constraints)

$$M^i := D_j K^{ij} - D^i K - 8\pi j^i = 0$$

• spatial part E_{ij} (evolution equations)

$$\mathcal{L}_n \mathcal{K}_{ij} = -lpha^{-1} D_i D_j lpha + {}^{(3)} \mathcal{R}_{ij} + \mathcal{K} \mathcal{K}_{ij} - 2 \mathcal{K}_{ik} \mathcal{K}_j{}^k + ext{matter}$$

• Definition of K_{ij} was

$$\mathcal{L}_n \gamma_{ij} = 2K_{ij}$$

• No time derivatives of α and β^i appear anywhere

Formulations of the Einstein equations

- The 6 + 6 variables (γ_{ij}, K_{ij}) obey 4 constraints that need to be solved for the initial data, given suitable free data
- The constraints are propagated by the evolution equations

$$\dot{H} \sim M^i{}_{,i}, \quad \dot{M}_i \sim H_{,i}$$

- We need to give four gauge conditions (algebraic, evolution, or elliptic equations) for α and β^i
- We can add constraints to the evolution equations
- The resulting evolution equations need to be well-posed
- ...even when the constraints are violated (because of numerical error)
- Ideally, the constraints should decay in time

Solving the constraints

• Parameterize 6+6 (γ_{ij}, K_{ij}) at t = 0 as

$$\begin{split} \gamma_{ij} &= \psi^{4} \tilde{\gamma}_{ij} \\ K_{ij} &= A_{ij} + \frac{1}{3} \gamma_{ij} K, \qquad A_{i}{}^{i} = 0 \\ A^{ij} &= \psi^{-10} (\tilde{A}^{ij}_{TT} + \tilde{A}^{ij}_{L}), \qquad \tilde{D}_{j} \tilde{A}^{ij}_{TT} = 0 \\ \tilde{A}^{ij}_{L} &= \tilde{D}^{i} W^{j} + \tilde{D}^{j} W^{i} - \frac{2}{3} \tilde{\gamma}^{ij} \tilde{D}_{k} W^{k} \end{split}$$

where $\tilde{D}_k \tilde{\gamma}_{ij} := 0$ • Free data $(\tilde{\gamma}_{ij}, \tilde{A}^{ij}_{TT})$ (5+3 components)

- 4 coupled nonlinear elliptic equations for (ψ, W^i)
- Simple cases: conformally flat initial data $\tilde{\gamma}_{ij} = \delta_{ij}$, and/or time-symmetric initial data $K_{ij} = 0$

Counting degrees of freedom

- Initial data: 6+6 (g_{ij}, K_{ij}) 4 Einstein constraints (H, M_i) = 5+3 $(\tilde{A}_{ij}^{TT}, \tilde{\gamma}_{ij})$
- But we can still change the 3 spatial coordinates without changing the initial data
- And we can push the initial data slice backwards and forwards in the spacetime it defines, separately at each point

• 8
$$(\tilde{A}_{ij}^{TT}, \tilde{\gamma}_{ij})$$
 - 4 $(\Delta t, \Delta x^i)$ = 4 $(h_+, h_\times, \dot{h}_+, \dot{h}_\times)$

イロト イポト イヨト イヨト

Well-posedness of time evolution problems

- Solution exists and is unique
- Solution u(x, t) depends continuously on the initial data u(x, 0) (and boundary data) in suitable function norms

 $||\delta u(\cdot,t)|| \leq f(t) ||\delta u(\cdot,0)||$

where f(t) does **not** depend on $u(\mathbf{x}, 0)$

- Otherwise numerics do not converge with resolution
- Simple example: the flat space linear wave equation

$$\phi_{,t} =: \Pi, \qquad \Pi_{,t} = \Delta \phi$$

with $(\Pi, \phi) = 0$ at infinity (Cauchy problem) is well-posed in the energy norm

$$||(\Pi,\phi)(\cdot,t)||^2:=\int \left[\Pi^2+(
abla\phi)^2
ight]\,d^3x$$

because $||\delta u(\cdot, t)|| = ||\delta u(\cdot, 0)||$ (exercise)

Testing well-posedness

• Consider first-order systems for $\mathbf{u}(\mathbf{x}, t)$

$$\mathbf{u}_{,t} = P^{i}(\mathbf{u},\mathbf{x},t)\mathbf{u}_{,i} + \mathbf{S}(\mathbf{u},\mathbf{x},t)$$

• Linearise about a reference solution \mathbf{u}_0 by setting $\mathbf{u} = \mathbf{u}_0 + \delta \mathbf{u}$, then "freeze" coefficients

$$\delta \mathbf{u}_{,t} = P^i \delta \mathbf{u}_{,i} + Q \delta \mathbf{u}$$

where P^i and Q are now constant square matrices

- This tests the high frequency, small amplitude limit
- This is the regime that potentially goes wrong: higher spatial frequencies grow faster
- Only the principal part P^i matters for well-posedness

ロト (雪) (ヨ) (ヨ)

Strong hyperbolicity in 1D

• Single first-order linear PDE with constant coefficients in 1D

$$u_{t} + \lambda u_{x} = 0$$
, $u(x, 0) = f(x) \Rightarrow u(x, t) = f(x - \lambda t)$

• System of such PDEs

$$u_{t} + Pu_{x} = 0, \quad u(x,0) = f(x)$$

- Strong hyperbolicity in 1D: P has a complete set of real eigenvectors with real eigenvalues ⇔ it can be diagonalised P = RΛR⁻¹ where the columns of R are the eigenvectors
- Vector of characteristic variables $\mathbf{U} := R^{-1}\mathbf{u}$

$$\mathbf{U}_{,t} + \Lambda \mathbf{U}_{,x} = 0$$

• Each characteristic variable propagates at its own speed λ

Strong hyperbolicity in 3D

• Now consider linear system in 3D with constant coefficients

$$\mathbf{u}_{,t} + P^i \mathbf{u}_{,i} = 0, \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{f}(\mathbf{x})$$

- Strong hyperbolicity: (1) Pⁱn_i has a complete set of real eigenvectors with real eigenvalues for all directions n_i
 (2) R and Λ depend smoothly on n_i
- Formal solution (exercise): Fourier transform in space, split into characteristic variables, evolve, put back together

$$\mathbf{u}(\mathbf{x},t) = \frac{1}{2\pi} \int e^{i\mathbf{k}\mathbf{x}} \left(R(\mathbf{k}) e^{-i\Lambda(\mathbf{k})t} R(\mathbf{k})^{-1} \int e^{-i\mathbf{k}\mathbf{x}'} \mathbf{f}(\mathbf{x}') d^3 x' \right) d^3 k$$

- Hence Cauchy problem well-posed in L^2 norm $\sqrt{\int \mathbf{u}^2 d^3x}$
- Much harder: proof that the linear system with variable coefficients is well-posed (for some short finite time), and then the full nonlinear system

Symmetric hyperbolicity

• Consider again a linear(ised) system with constant (frozen) coefficients, and neglect non-principal part

$$\mathbf{u}_{,t}+P^{i}\mathbf{u}_{,i}=0$$

• Symmetric hyperbolicity: There is a Hermitian matrix *H* such that *HPⁱn_i* is Hermitian for all directions *n_i*, with *H* independent of *n_i*

$$(u^{\dagger}Hu)_{,t}+(u^{\dagger}HP^{i}u)_{,i}=0 \qquad \Rightarrow \frac{d}{dt}\int (u^{\dagger}Hu) d^{3}x = \text{boundary}$$

- The energy $\int (u^{\dagger}Hu) d^3x$ is locally conserved (exercise) in the small amplitude, high frequency limit (and can be bounded in the nonlinear problem)
- ∃ class of boundary conditions (maximally dissipative BCs) such that the **initial-boundary value problem** is wellposed
- Symmetric hyperbolicity \Rightarrow strong hyperbolicity \Rightarrow = \Rightarrow = \Rightarrow \Rightarrow

General considerations

- The Einstein equations written in terms of the metric are second-order in space and time
- Reducing to first order in time as in $\gamma_{ij,t} \sim K_{ij}$, $K_{ij,t} \sim \partial \partial \gamma_{kl}$ makes no difference to well-posedness
- Reducing to first order in space as in $d_{ijk} := \gamma_{ij,k}$ introduces additional constraints, and sources of numerical error
- Necessary and sufficient criteria for strong and symmetric hyperbolicity exist for general first-order in time, second-order in space systems
- Hyperbolic systems coupled to elliptic or parabolic equations through non-principal terms are also well-posed

Partly the same slide as earlier

- We need to give four **gauge conditions** (algebraic, evolution, or elliptic equations) for α and β^i
- We can introduce new variables
- We can add constraints to the evolution equations
- The resulting evolution equations need to be well-posed
- ...even when the constraints are violated (because of numerical error)
- The (formal) constraint evolution system should also be well-posed (constraint-preserving boundary conditions if possible)
- Free versus constrained evolution
- Ideally, the constraints should decay in time

A 3 b

Generalized harmonic gauge formulation

• Leading order of the vacuum Einstein equation

$$R_{\mu\nu} = -\frac{1}{2}g^{\alpha\beta}\left(g_{\mu\nu,\alpha\beta} + g_{\alpha\beta,\mu\nu} - 2g_{\alpha(\mu,\nu)\beta}\right) + \text{lower order} = 0$$

• Impose gauge condition $C^{\mu}:=\Box x^{\mu}-H^{\mu}(\mathbf{x},g_{lphaeta})=0$

$$\Box x^{\mu} = \frac{1}{\sqrt{-g}} \left(\sqrt{-g} g^{\alpha\beta}(x^{\mu})_{,\alpha} \right)_{,\beta} = \frac{1}{\sqrt{-g}} \left(\sqrt{-g} g^{\mu\beta} \right)_{,\beta}$$

• Einstein equations in GH gauge (exercise)

$$R_{\mu\nu} + C_{(\mu,\nu)} = -\frac{1}{2}g^{lphaeta}g_{\mu
u,lphaeta} - H_{(\mu,
u)} + ext{lower order} = 0$$

- Solve Einstein constraints for initial data in usual 3+1 form
- But then evolve all 10 $g_{\mu\nu}$ directly with $\Box g_{\mu\nu}\sim 0$

4 3 b

Z4 formulation

• Add 4 new variables Z_{μ} . Instead of $R_{ab} = 0$ solve

$$R_{ab} + \nabla_a Z_b + \nabla_b Z_a = 0$$

• The time derivatives of the new variables are essentially the Einstein constraints

$$\dot{Z}_{\mu} \sim E_{\mu} := (H, M_i)$$

Setting $Z_{\mu} = 0$ and $E_{\mu} = 0$ in the initial data we obtain a solution of $R_{ab} = 0$, but the new system is strongly hyperbolic in a family of useful gauges

Modifying further

$$R_{ab} + \nabla_a Z_b + \nabla_b Z_a - \kappa (t_a Z_b + t_b Z_c - g_{ab} t^c Z_c) = 0$$

we get constraint damping

$$\dot{Z}_{\mu} \sim E_{\mu} - \kappa Z_{\mu}$$

C. Gundlach

Numerical relativity

20 / 23

・ 同 ト ・ ヨ ト ・ ヨ ト ・

BSSN formulation and some popular gauges

- Split conformal factor from γ_{ij} and trace from K_{ij}
- Add 3 new variables $\tilde{\Gamma}_i := \tilde{\gamma}^{jk} \tilde{\gamma}_{ij,k}$
- Further modifications to lower-order terms
- Strongly or symmetric hyperbolic in suitable gauges
 - Harmonic slicing $K_i^{\ i} = 0 \Rightarrow \Delta \alpha \sim \alpha (R + K_{ij} K^{ij})$

• "1+log slicing"
$$\dot{lpha} \sim f(lpha) {\cal K}$$

- Zero shift $\beta^i = 0$
- " Γ -driver" shift $\dot{\beta}^i \sim \tilde{\Gamma}^i$
- Initial data for two black holes can be "puncture data" where $\gamma_{ij} \sim (M/r) \delta_{ij}$
- By contrast Z4 and harmonic gauge need black hole excision

イロト イポト イヨト イヨト

Polar-radial coordinates in spherical symmetry

- Make the coordinate r the "area radius", meaning that the area of the 2-spheres t = r = const is $4\pi r^2$
- Choose t normal to r in the sense $\nabla_a t \nabla^a r = g^{tr} = 0$

$$ds^{2} = -\alpha(t,r)^{2} dt^{2} + a(t,r)^{2} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right)$$

- The Hamiltonian constraint becomes an ODE for a(r) at each moment t
- The polar slicing condition becomes a linear ODE for α(r) at each moment t
- Example of "maximally constrained evolution"
- In 3D, only "free evolution" is common

Null coordinates

• Surfaces of constant coordinate *u* are null

$$g^{ab}\nabla_a u\nabla_b u = g^{uu} = 0$$

- V^a := ∇^au is null and obeys V^a∇_aV^b = 0, so u-surfaces are ruled by null geodesics with tangent vector V^a
- Coordinate choices
 - double null (u, v, θ, φ) where $g^{uu} = g^{vv} = 0$
 - Bondi (u, r, θ, φ) where r is an area radius
 - affine $(u, \lambda, \theta, \varphi)$ where λ is an affine parameter along V^a
- Constraints on constant u "time" slices can be solved by integration outwards (including the initial data u = 0)
- Another example of maximally constrained evolution
- Problems when light rays cross

・ロト ・ 同ト ・ ヨト ・ ヨト