Formulations of the Einstein equations for spacetime evolutions

Carsten Gundlach

Mathematical Sciences University of Southampton

Relativistic Fluid Dynamics, Southampton, 17 July 2019

C. Gundlach [Numerical relativity](#page-22-0) 1/23

 $+ - + + - + -$

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

 Ω

∍

Overview

- 10 Einstein equations $G_{\mu\nu} = 8\pi T_{\mu\nu}$: second-order nonlinear PDEs for 10 metric coefficients $g_{\mu\nu}$
- Gauge freedom: 4 functions of 4 variables $x^{\mu} \rightarrow \tilde{x}^{\mu}(x^{\nu})$
- Why 2 polarisations of gravitational waves? Why wave equations?
- Initial data and their time evolution?
- Well-posed PDE problems?
- Notation (Wald): V^a an abstract vector, V^{μ} its components in coordinates $x^{\mu} := (t, x^{i}), i = 1, 2, 3$ $a \sim b$ means "something like"

 Ω

イロト イ押 トイヨ トイヨト

Time slices and their normal vector n^a

- Time slice $t=\mathrm{const}$ has 3 tangent vectors $\partial/\partial x^i$
- Vector n^a normal to time slice is defined by

$$
\left(\frac{\partial}{\partial x^i}\right)^a n_a := 0 \quad \Rightarrow \quad n_i = 0
$$

- A vector X^a is purely spatial if $X^a n_a = 0$, hence if $X^0 = 0$.
- Recall $\partial/\partial t$ means "change t, keep x^i constant"

$$
\left(\frac{\partial}{\partial t}\right)^a=\alpha n^a+b^a,\qquad n_ab^a:=0\quad\Rightarrow\quad b^0=0
$$

 n^a is defined to be future-pointing and unit length

$$
n_a n^a := -1 \quad \Rightarrow \quad \left(\frac{\partial}{\partial t}\right)^a n_a = n_0 = -\alpha
$$
\nc. Gundlach

\nNumerical relativity

\n
$$
\begin{array}{c}\n\text{C. } \text{Gundlach} \\
\text{D. } \text{N. } \text{N. } \text{Simplifying the following equation: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{D. } \text{Simplifying the following equation: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{EVALUATE: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{EVALUATE: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{EVALUATE: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{EVALUATE: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{C. } \text{Gundlach} \quad \text{N. } \text{Simplifying the following equation: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{D. } \text{Simplifying the following equation: } \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
\text{D. } \text{Simplifying the following equation: } \mathbb{R} \times \mathbb{R} \\
\text{EVALUATE: } \mathbb{R} \times \mathbb{R} \
$$

Lapse and shift

- Starting from a point coordinates (t, x^i) , the geometrical location of the point with coordinates $(t+\Delta t,x^i)$ is determined by the lapse α and shift vector b^i
- Vice versa, starting from an initial slice $t = 0$ with coordinates x^i , the coordinate system on spacetime is constructed along with the spacetime by choosing α and b^i

つくい

The spatial metric as a projection operator

• The 3-metric h_{ab} of a slice of constant t can be defined geometrically in terms of n^a and the spacetime metric g_{ab} :

$$
h_{ab} := g_{ab} + n_a n_b \quad \Rightarrow \quad h_{ab} n^b = 0, \quad h_a^b h_b^c = h_a^c
$$

- Hence $h_a{}^b X^a = g_a{}^b X^a = X^b$ for spatial vectors, and so we can raise and lower indices for spatial vectors with h_{ab}
- We have

$$
h^{ab}n_b = 0 \quad \Rightarrow \quad h^{0i} = h^{i0} = h^{00} = 0
$$

and so we define $\gamma^{ij} := h^{ij}$, then γ_{ij} as the matrix inverse of $\gamma^{jj}.$

Recall $b^0 = 0$ and we define $\beta^i := b^i$ and then $\beta_i := \gamma_{ij} \beta^j$.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right. \right\} & \leftarrow \bot \Xi \end{array} \right.$

3+1 split of the 4-dimensional metric

We now have all the definitions to calculate

$$
g_{00}=-\alpha^2+\beta_i\beta^i, \quad g_{0i}=\beta_i, \quad g_{ij}=\gamma_{ij}
$$

or in line element form

$$
ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt)(dx^j + \beta^j dt)
$$

The inverse spacetime metric is

$$
g^{00} = -\alpha^{-2}
$$
, $g^{0i} = \alpha^{-2}\beta^i$, $g^{ij} = \gamma^{ij} - \alpha^{-2}\beta^i\beta^j$

Exercises: Check this against our definitions. Check $g_{\mu\nu}g^{\nu\lambda}=\delta_{\mu}{}^{\lambda}.$ Calculate $h_{\mu\nu}$, $h^{\mu\nu}$, $h_{\mu}{}^{\nu}$, n^{μ} , $b_{\mu},$ $X_{\mu}.$

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 α . The set of α

The extrinsic curvature

We could write the wave equation (in Minkowski spacetime) $\phi_{\text{.}tt} = \Delta \phi$ in first-order in time form as

$$
\phi_{,t} =: \Pi, \qquad \Pi_{,t} = \Delta \phi
$$

- The GR equivalent of ϕ is the 3-metric γ_{ii}
- The equivalent of Π is the extrinsic curvature K_{ii} Geometric definition (there are two conventions for the sign):

$$
2K_{ab} := \mathcal{L}_n h_{ab} \quad \Rightarrow \quad K_{ab} = h_a^{\ c} \nabla_c n_b, \quad K_{ab} = K_{ba}, \quad K_{ab} n^b = 0,
$$

(exercise) so K_{ab} is a symmetric spatial tensor like h_{ab}

In synchronous gauge $\alpha=1$, $\beta^i=0$ where $n^a=(\partial/\partial t)^a$

$$
2K_{ij}=\mathcal{L}_{\frac{\partial}{\partial t}}\gamma_{ij}=\gamma_{ij,t}
$$

• In general gauge (exercise)

$$
\gamma_{ij,t}=2\alpha K_{ij}+\beta^k\gamma_{ij,k}+\gamma_{ik}\beta^k_{\tiny\begin{array}{cc}j\to+i\end{array}}\gamma_{jk}\beta^k_{\tiny\begin{array}{cc}j\to+i\end{array}}\\ \tiny{\begin{array}{cc}\text{if }j\to+i\end{array}}\\
$$

3+1 split of the Einstein equations

Split the Einstein equations $E_{ab} := G_{ab} - 8\pi T_{ab}$ into

time part E^{00} (Hamiltonian constraint) $(K:=K_i{}^i)$

$$
H := {}^{(3)}R^{i}{}_{i} + K - K_{ij}K^{ij} - 16\pi\rho = 0
$$

mixed part E_i^0 (momentum constraints)

$$
M^i := D_j K^{ij} - D^i K - 8\pi j^i = 0
$$

• spatial part E_{ii} (evolution equations)

$$
\mathcal{L}_n K_{ij} = -\alpha^{-1} D_i D_j \alpha + {}^{(3)}R_{ij} + K K_{ij} - 2K_{ik} K_j{}^k + \text{matter}
$$

• Definition of K_{ii} was

$$
\mathcal{L}_n\gamma_{ij}=2K_{ij}
$$

No time d[er](#page-7-0)ivativ[e](#page-8-0)s of α α α [an](#page-6-0)d β^i appear an[yw](#page-8-0)here

Formulations of the Einstein equations

- The 6 + 6 variables (γ_{ii}, K_{ii}) obey 4 constraints that need to be solved for the initial data, given suitable free data
- The constraints are propagated by the evolution equations

$$
\dot{H} \sim M^i_{\ ,i}, \quad \dot{M}_i \sim H_{,i}
$$

- We need to give four gauge conditions (algebraic, evolution, or elliptic equations) for α and β^i
- We can add constraints to the evolution equations
- The resulting evolution equations need to be well-posed
- ...even when the constraints are violated (because of numerical error)
- Ideally, the constraints should decay in time

SATISFIED AT A

Solving the constraints

• Parameterize 6+6 (γ_{ii} , K_{ii}) at $t = 0$ as

$$
\gamma_{ij} = \psi^4 \tilde{\gamma}_{ij}
$$
\n
$$
K_{ij} = A_{ij} + \frac{1}{3} \gamma_{ij} K, \qquad A_i{}^i = 0
$$
\n
$$
A^{ij} = \psi^{-10} (\tilde{A}_{TT}^{ij} + \tilde{A}_L^{ij}), \qquad \tilde{D}_j \tilde{A}_{TT}^{ij} = 0
$$
\n
$$
\tilde{A}_L^{ij} = \tilde{D}^i W^j + \tilde{D}^j W^i - \frac{2}{3} \tilde{\gamma}^{ij} \tilde{D}_k W^k
$$

where $\tilde{D}_k \tilde{\gamma}_{ij} := 0$ Free data $(\tilde{\gamma}_{ij}, \tilde{A}^{ij}_{\mathcal{TT}})$ (5 $+3$ components)

- 4 coupled nonlinear elliptic equations for (ψ, W^i)
- Simple cases: conformally flat initial data $\tilde{\gamma}_{ii} = \delta_{ii}$, and/or time-symmetric initial data $K_{ij} = 0$

つくい

イロメ イ押メ イヨメ イヨメ

Counting degrees of freedom

- Initial data: 6+6 (g_{ii}, K_{ii}) 4 Einstein constraints (H, M_i) $= 5{+}3 \;(\tilde{A}^{\mathcal{TT}}_{ij}, \tilde{\gamma}_{ij})$
- But we can still change the 3 spatial coordinates without changing the initial data
- And we can push the initial data slice backwards and forwards in the spacetime it defines, separately at each point

$$
\bullet \ \ 8\ \left(\tilde{A}_{ij}^{TT},\tilde{\gamma}_{ij}\right)-4\ \left(\Delta t,\Delta x^{i}\right)=4\ \left(h_{+},h_{\times},h_{+},h_{\times}\right)
$$

 Ω

イロト イ押 トイヨ トイヨト

Well-posedness of time evolution problems

- Solution exists and is unique
- Solution $u(x, t)$ depends continuously on the initial data $u(\mathbf{x},0)$ (and boundary data) in suitable function norms

 $||\delta u(\cdot,t)|| \leq f(t) ||\delta u(\cdot,0)||$

where $f(t)$ does **not** depend on $u(\mathbf{x}, 0)$

- Otherwise numerics do not converge with resolution
- Simple example: the flat space linear wave equation

$$
\phi_{,t} =: \Pi, \qquad \Pi_{,t} = \Delta \phi
$$

with $(\Pi, \phi) = 0$ at infinity (Cauchy problem) is well-posed in the energy norm

$$
||(\Pi,\phi)(\cdot,t)||^2:=\int \left[\Pi^2+(\nabla\phi)^2\right] d^3x
$$

becau[se](#page-10-0) $||\delta u(\cdot,t)|| = ||\delta u(\cdot,0)||$ (exercise)

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{B}$

Testing well-posedness

• Consider first-order systems for $\mathbf{u}(\mathbf{x},t)$

$$
\mathbf{u}_{,t}=P^i(\mathbf{u},\mathbf{x},t)\mathbf{u}_{,i}+\mathbf{S}(\mathbf{u},\mathbf{x},t)
$$

• Linearise about a reference solution \mathbf{u}_0 by setting $\mathbf{u} = \mathbf{u}_0 + \delta \mathbf{u}$, then "freeze" coefficients

$$
\delta \mathbf{u}_{,t} = P^i \delta \mathbf{u}_{,i} + Q \delta \mathbf{u}
$$

where P^i and \overline{Q} are now constant square matrices

- This tests the high frequency, small amplitude limit
- This is the regime that potentially goes wrong: higher spatial frequencies grow faster
- Only the principal part $Pⁱ$ matters for well-posedness

 Ω

 $(1, 4, 5)$. $(1, 5)$. $(1, 6)$

Strong hyperbolicity in 1D

Single first-order linear PDE with constant coefficients in 1D

$$
u_{,t} + \lambda u_{,x} = 0, \quad u(x,0) = f(x) \quad \Rightarrow \quad u(x,t) = f(x - \lambda t)
$$

• System of such PDEs

$$
\mathbf{u}_{,t} + P\mathbf{u}_{,x} = 0, \quad \mathbf{u}(x,0) = \mathbf{f}(x)
$$

- Strong hyperbolicity in $1D$: P has a complete set of real eigenvectors with real eigenvalues \Leftrightarrow it can be diagonalised $P = R\Lambda R^{-1}$ where the columns of R are the eigenvectors
- Vector of characteristic variables $\boldsymbol{\mathsf{U}} := R^{-1}\boldsymbol{\mathsf{u}}$

$$
\mathbf{U}_{,t} + \Lambda \mathbf{U}_{,x} = 0
$$

• Each characteristic variable propagates [at](#page-12-0)i[ts](#page-14-0) [ow](#page-13-0)[n](#page-14-0) [s](#page-11-0)[p](#page-15-0)[e](#page-10-0)e[d](#page-11-0) λ

Strong hyperbolicity in 3D

Now consider linear system in 3D with constant coefficients

$$
\mathbf{u}_{,t} + P^i \mathbf{u}_{,i} = 0, \quad \mathbf{u}(\mathbf{x}, 0) = \mathbf{f}(\mathbf{x})
$$

- **Strong hyperbolicity**: (1) $P^i n_i$ has a complete set of real eigenvectors with real eigenvalues for all directions n_i (2) R and Λ depend smoothly on n_i
- Formal solution (exercise): Fourier transform in space, split into characteristic variables, evolve, put back together

$$
\mathbf{u}(\mathbf{x},t) = \frac{1}{2\pi} \int e^{i\mathbf{k}\mathbf{x}} \left(R(\mathbf{k}) e^{-i\Lambda(\mathbf{k})t} R(\mathbf{k})^{-1} \int e^{-i\mathbf{k}\mathbf{x}'} \mathbf{f}(\mathbf{x}') d^3x' \right) d^3k
$$

- Hence Cauchy problem well-posed in L^2 norm $\sqrt{\int u^2 d^3x}$
- Much harder: proof that the linear system with variable coefficients is well-posed (for some short finite time), and then the full nonlinear system イロメ イ押メ イヨメ イヨメー つくい

Symmetric hyperbolicity

Consider again a linear(ised) system with constant (frozen) coefficients, and neglect non-principal part

$$
\mathbf{u}_{,t} + P^i \mathbf{u}_{,i} = 0
$$

• Symmetric hyperbolicity: There is a Hermitian matrix H such that $HP^i n_i$ is Hermitian for all directions n_i , with H independent of n_i

$$
(u^{\dagger}Hu)_{,t} + (u^{\dagger}HP^i u)_{,i} = 0 \qquad \Rightarrow \frac{d}{dt} \int (u^{\dagger}Hu) d^3x = \text{boundary}
$$

- The energy $\int (u^\dagger H u) \, d^3x$ is locally conserved (exercise) in the small amplitude, high frequency limit (and can be bounded in the nonlinear problem)
- ∃ class of boundary conditions (maximally dissipative BCs) such that the **initial-boundary value problem** is wellposed
- Symmetric hype[rb](#page-14-0)[oli](#page-16-0)[ci](#page-14-0)[ty](#page-15-0) \Rightarrow strong hyperbolicity \longrightarrow \Rightarrow \longrightarrow \Rightarrow OQ

General considerations

- The Einstein equations written in terms of the metric are second-order in space and time
- Reducing to first order in time as in $\gamma_{ii,t} \sim K_{ii}$, $K_{ii,t} \sim \partial \partial \gamma_{kl}$ makes no difference to well-posedness
- Reducing to first order in space as in $d_{ijk} := \gamma_{ii,k}$ introduces additional constraints, and sources of numerical error
- Necessary and sufficient criteria for strong and symmetric hyperbolicity exist for general first-order in time, second-order in space systems
- Hyperbolic systems coupled to elliptic or parabolic equations through non-principal terms are also well-posed

 Ω

イロン イ押ン イヨン イヨン

Partly the same slide as earlier

- We need to give four **gauge conditions** (algebraic, evolution, or elliptic equations) for α and β^i
- We can introduce new variables
- We can add constraints to the evolution equations
- The resulting evolution equations need to be well-posed
- ...even when the constraints are violated (because of numerical error)
- The (formal) constraint evolution system should also be well-posed (constraint-preserving boundary conditions if possible)
- **•** Free versus constrained evolution
- Ideally, the constraints should decay in time

 λ . The set of λ

Generalized harmonic gauge formulation

Leading order of the vacuum Einstein equation

$$
R_{\mu\nu} = -\frac{1}{2} g^{\alpha\beta} \left(g_{\mu\nu,\alpha\beta} + g_{\alpha\beta,\mu\nu} - 2 g_{\alpha(\mu,\nu)\beta} \right) + \text{lower order} = 0
$$

Impose gauge condition $C^\mu:=\Box x^\mu - H^\mu({\bf x},{\bf g}_{\alpha\beta})=0$

$$
\square {\sf x}^\mu = \frac{1}{\sqrt{-{\sf g}}} \left(\sqrt{-{\sf g}}{\sf g}^{\alpha\beta}({\sf x}^\mu)_{,\alpha}\right)_{,\beta} = \frac{1}{\sqrt{-{\sf g}}} \left(\sqrt{-{\sf g}}{\sf g}^{\mu\beta}\right)_{,\beta}
$$

• Einstein equations in GH gauge (exercise)

$$
R_{\mu\nu}+C_{(\mu,\nu)}=-\frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta}-H_{(\mu,\nu)}+\text{lower order}=0
$$

- \bullet Solve Einstein constraints for initial data in usual $3+1$ form
- But then evolve all 1[0](#page-19-0) $g_{\mu\nu}$ directly with $\Box g_{\mu\nu} \sim 0$

Z4 formulation

• Add 4 new variables Z_{μ} . Instead of $R_{ab} = 0$ solve

$$
R_{ab}+\nabla_a Z_b+\nabla_b Z_a=0
$$

The time derivatives of the new variables are essentially the Einstein constraints

$$
Z_\mu \sim E_\mu := (H, M_i)
$$

Setting $Z_{\mu} = 0$ and $E_{\mu} = 0$ in the initial data we obtain a solution of $R_{ab} = 0$, but the new system is strongly hyperbolic in a family of useful gauges

• Modifying further

$$
R_{ab} + \nabla_a Z_b + \nabla_b Z_a - \kappa (t_a Z_b + t_b Z_c - g_{ab} t^c Z_c) = 0
$$

we get constraint damping

$$
\dot{\mathsf{Z}}_\mu \sim \mathsf{E}_\mu - \kappa \mathsf{Z}_\mu
$$

BSSN formulation and some popular gauges

- Split conformal factor from γ_{ij} and trace from K_{ij}
- Add 3 new variables $\tilde{\mathsf{\Gamma}}_i := \tilde{\gamma}^{jk} \tilde{\gamma}_{ij,k}$
- Further modifications to lower-order terms
- Strongly or symmetric hyperbolic in suitable gauges
	- Harmonic slicing $K_i^i = 0 \Rightarrow \Delta \alpha \sim \alpha (R + K_{ij} K^{ij})$
	- "1+log slicing" $\alpha \sim f(\alpha)K$
	- Zero shift $\beta^i = 0$
	- "Γ-driver" shift $\dot{\beta}^i \sim \tilde{\Gamma}^i$
- Initial data for two black holes can be "puncture data" where $\gamma_{ii} \sim (M/r)\delta_{ii}$
- By contrast Z4 and harmonic gauge need black hole excision

 Ω

イロン イ押ン イヨン イヨン

Polar-radial coordinates in spherical symmetry

- Make the coordinate r the "area radius", meaning that the area of the 2-spheres $t=r=const$ is $4\pi r^2$
- Choose t normal to r in the sense $\nabla_a t \nabla^a r = g^{tr} = 0$

$$
ds^{2} = -\alpha(t,r)^{2} dt^{2} + a(t,r)^{2} dr^{2} + r^{2} (d\theta^{2} + \sin^{2} \theta d\varphi^{2})
$$

- The Hamiltonian constraint becomes an ODE for $a(r)$ at each moment t
- \bullet The polar slicing condition becomes a linear ODE for $\alpha(r)$ at each moment t
- Example of "maximally constrained evolution"
- In 3D, only "free evolution" is common

 Ω

イロン イ押ン イヨン イヨン

Null coordinates

A Surfaces of constant coordinate u are null

$$
g^{ab}\nabla_a u \nabla_b u = g^{uu} = 0
$$

- $V^a := \nabla^a u$ is null and obeys $V^a \nabla_a V^b = 0$, so u-surfaces are ruled by null geodesics with tangent vector V^a
- Coordinate choices
	- double null (u, v, θ, φ) where $g^{uu} = g^{vv} = 0$
	- Bondi (u, r, θ, φ) where r is an area radius
	- affine $(u, \lambda, \theta, \varphi)$ where λ is an affine parameter along V^a
- Constraints on constant u "time" slices can be solved by **integration** outwards (including the initial data $u = 0$)
- Another example of maximally constrained evolution
- Problems when light rays cross

つくい

イロメ イ押メ イヨメ イヨメー