

-

Polymetallic nodule mining: Innovative concepts for commercialisation

Polymetallic nodule mining: Innovative concepts for commercialisation

Warren Flentje Group <u>E</u>co Sang-Eui Lee

Anastasia Virnovskaia

Shiping Wang

Suraiya Zabeen

2012 LRET Research Collegium

Topic: System engineering for Seabed Exploitation

Focus: Marine mineral exploitation; Polymetallic nodules (PMN)

Aims:

- Review the field of polymetallic nodule mining
- Identify the main areas for development
- Propose new concepts to address these areas.

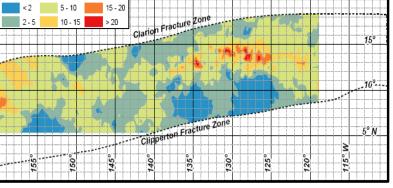
Contents

- Introduction
- Barriers to commercialisation RISK
- New engineering concepts for seabed mining
 - Concept selection & development
 - Conceptual design of nodule mining
- Mineral processing concept
 - Composition & techniques
 - REE processing
- Hazard identification of the concept design
 - Method & results
- Conclusions
- Q&A

Introduction


- What are polymetallic nodules?
- Resource assessment at the CCZ

What are polymetallic nodules?


Source: Cited from Science Photo Library

Resource assessment at the CCZ

Abundance of polymetallic nodule (kg/m²)

(Morgan, 2012)

The inferred resources of CCZ

Source	Included area	Estimated abundance (metric tons×10 ⁶)				
	$(\mathrm{km}^2 \times 10^6)$	Nodule	Mn	Cu		
Reduced area	3.83	21,100	5,950	46	270	234

	Resourc	Total Value \$ 16 trillion			
Materials	Abundance (M ton)	Production on land (M ton/year, 2010)	Year	Value trillion (98\$*)	
Manganese	5,950	14	425	8.9	
Cobalt	46	0.17	280	1.3	
Nickel	270	1	170	4.2	
Copper	290	16	18	1.6	

*Value in 1998 US dollars

Source: Production data from www.USGS.com

- Nodules
- Nodule economics
- Background for our engineering concept

Previous mining ventures

0	UNIVERSITY OF
Sout	nampton


Organization/ Consortium name	Members	Year	Sampling Yield	
India	NIOT, DOD	1974		
Ocean Mining Associates	US Steel, Union Miniere, Sun Company, Ente Nazionale, Idrocarburi	1974	500 tons	
AFERNOD	CNEXO, Commissariat a l' Energie Atomique, Societe Metallurgique le Nickel,	1974		
Deep Ocean Resources Development	Chantiers de France-Dunkerque C. Itoh and Co., Marubeni Corporation, Mitsubishi Corporation, Mitsui and Co., Nichimen Co., Nissho Iwai Co., Sumitomo Co., Mitsubishi Metal Co., Sumitomo Metal Mining Co., National Institute for Resources and Environment. Deep Ocean Minerels	1974	7.25 tons	
	Mining Co., National Institute for Resources and Environment, Deep Ocean Minerals Association, Technology Research Association of Ocean Mineral Resources Mining System.			
Ocean Management Incorporated	INCO, Metallgesellschaft AG, Preussag AG, Salzgitter AG, SEDCO, Deep Ocean Mining Company	1975	1000 tons	
Ocean Minerals Company	Amoco Ocean Minerals Co., Lockheed Systems Co., Ocean Minerals Inc., Billiton BV, BKW Ocean Minerals BV	1977		
Yuzhmorgeologiya	Russia			
Inter Ocean Metals	Bulgaria, Cuba, Czech Republic, Poland, Russian Federation, Slovakia			
COMRA	China			
KORDI	Korea			
NOR	Nauru			
Tonga Offshore Mining	Nautilus Minerals			
OceanflORE	IHC Merwede, DEME	2011		

Nodule economics – Project finance

Required IRR = Market Rate + Req. Return + **Risk Premium** = **30-35%**

- Market-Product Technology (MPT) index imposes a risk premium on the required return for an investment using new or unproven technology.
- PMN mining has been assessed at very high risk, partly due to poor yields and unproven technology
- Poor yields are largely the result of inadequate performance from engineered components

Background for our engineering concept

Nodule mining system

Main challenges: Downtime, production cost

Our approach:

Simpler design based on proven concepts

Collector Main challenges:

Downtime, reduced efficiency due to interaction with the seabed

Our approach: Robust & reliable design

Lifting system Main challenges:

Cost, size, maintenance of riser systems

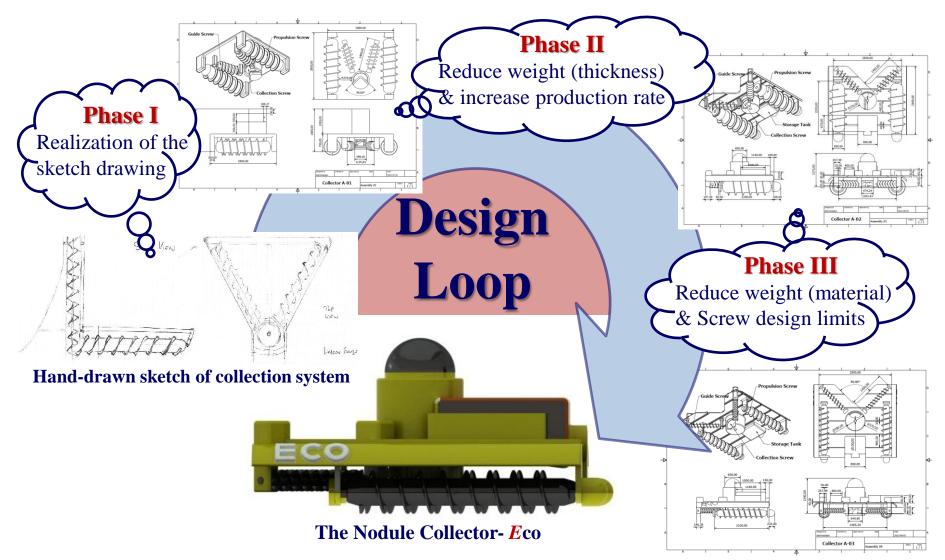
Our approach: Simplified shuttle concept

Processing Main challenges:

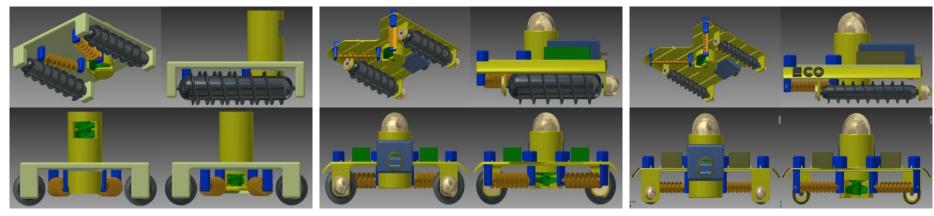
Dependence on marine mining, multiple products

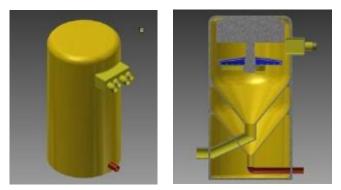
Our approach:

Processing route for combined marine and laterite ores

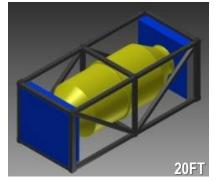

Conceptual design of nodule mining

- Concept selection & development
- Summary of the concept development
- Conceptual design of nodule mining

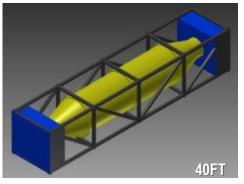

Concept selection & development(1/2)


Concept selection & development(2/2)

Phase I


Phase II

Phase III



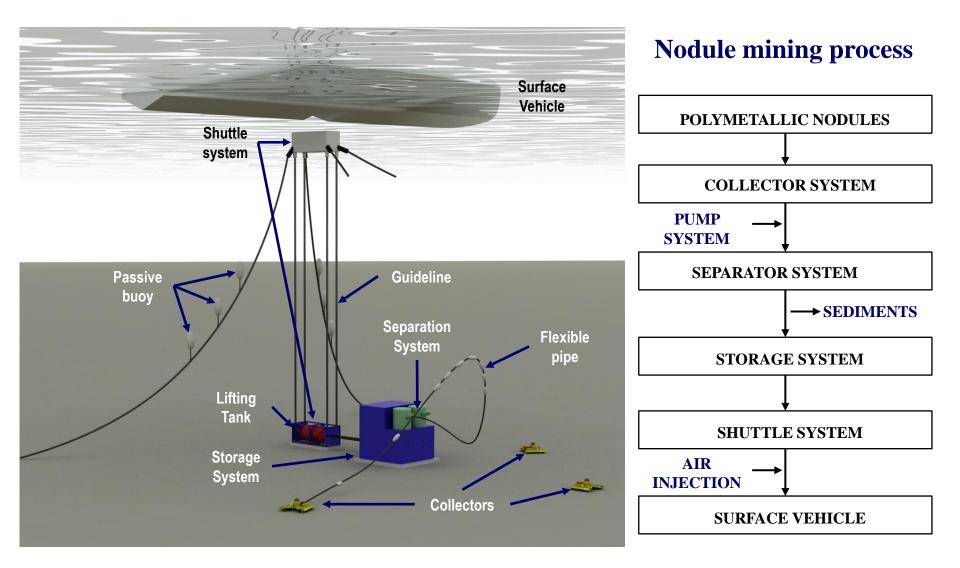
Capacity 150ton/hour, Weight 30ton

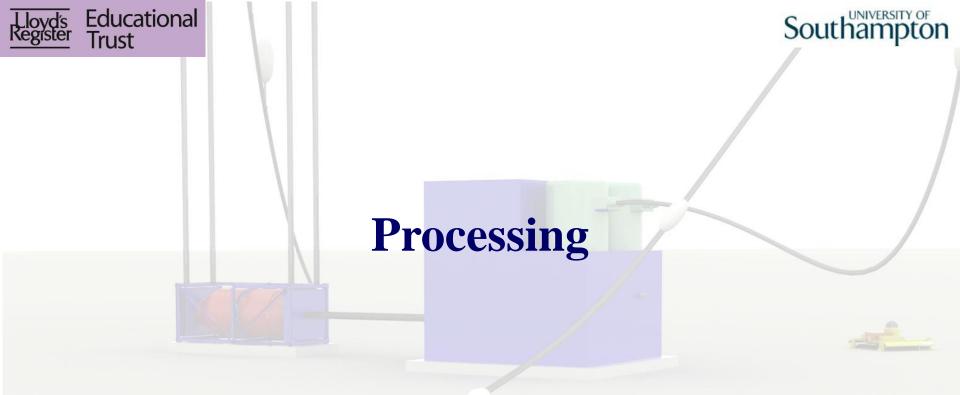
The separation system Group *E*co

Capacity 30ton, Weight 23ton

Capacity 50ton, Weight 60ton

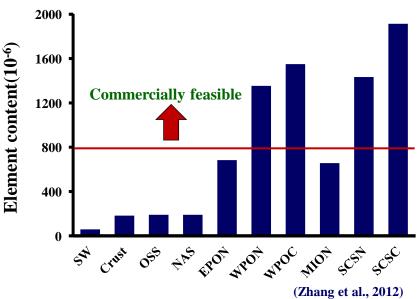
The storage system


Summary of the concept development


Μ	lodel Number	Phase I	Phase II	Phase III	
A	ngle (degree)	30	90	90	
•• 0	Inlet	1,140	2,400	2,500	
Hor. Screw	Width (mm) Outlet	500	470	550	
Ver. Screw	RPM	10	32	18	
Production Rate	1 Day (ton)	200	430	450	
	1 Mon (ton)	5,000	10,750	11,250	
	1 Year (ton)	60,000	130,000	135,000	
	Main Pro. Screw (ton)	1.30	0.67	0.45	
	Hor. Screw (ton)	0.22	0.08	0.06	
Weight	Ver. Screw (ton)	0.73	0.24	0.26	
	Main Frame (ton)	13.00	6.72	4.50	
	Total (ton)	16.77	8.46	5.78	

Conceptual design of nodule mining

- Polymetallic nodule composition
- Processing techniques
- New concept of REE processing


Polymetallic nodules

Composition

Origin	Chemical Composition (mass%)					Defeneres	
Origin	Mn	Fe	Ni	Co	Cu	Zn	References
Pacific Ocean	31.3	5.62	1.61	0.14	1.75	-	Hsiaohong (1992, 1996)
South- West Pacific Basin	16.6	22.8	0.35	0.44	0.21	-	Sen (2010)
Indian Ocean	10	11.4	0.26	0.14	0.23	-	Kanungo (1988, 1999)
South China Sea	27.7	8.92	1.62	0.02	0.1	0.08	Shen et al. (2007)

REE concentration

Note:

In this figure, SW=REE of Sea Water, Crust-=REE of the Crust, OSS=REE of Offshore Surface Sediments, NAS=North American shale, EPON=Eastern Pacific Ocean Nodules, WPON=Western Pacific Ocean Nodules, WPOC= Western Pacific Ocean Crust, MION=Mid-Indian Ocean Nodules, SCSN=South China Sea Nodules, SCSC=South China Sea Crust

The composition varies widely depending on the location. The pacific-wide REE concentration of polymetallic nodules is ~1400 ppm

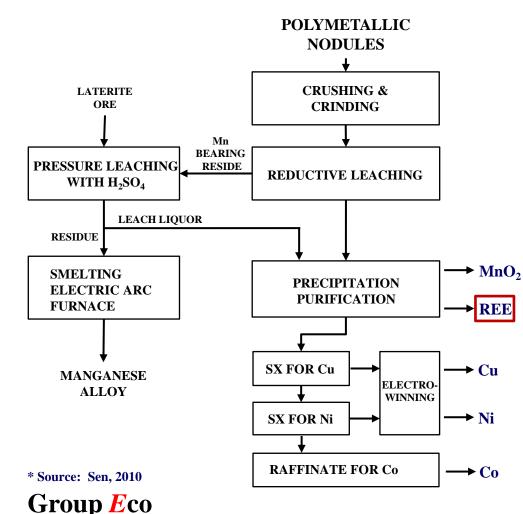
Processing techniques

Available feasible techniques for PMN processing:

- 1. Gas reduction and ammoniacal leach
- 2. Cuprion ammoniacal leach
- 3. High temperature and high pressure sulphuric acid leach
- 4. Reduction and hydrochloric acid leach
- 5. Smelting and sulphuric acid leach

	Andrews et al. (1983)	Hillman (1985)	Charles (1990)	Lenoble (1990)	Lenoble (1990)	Ham (1996)	Soreide et al. (2001)
IRR (%)	6.4	7.4	12	15.4	15.7	11.9	9.6
Capacity (DMTPA)	1.5 four metal	3.0 three metal	1.5 four metal	1.5 four metal	1.5 four metal	3.0 four metal	0.7 three metal
Process route	Reduction smelting & Cuprion processes	Cuprion	Reduction HCl leach	Sulphuric acid leach	Smelt reduction	Reduction roast ammonia leach	Sulphuric acid pressure leach

Sulphuric acid leach gives four metal recovery with 15% IRR.


IRR needs to be increased to 30-35% to make the PMN exploitation feasible. **Group** *E***co**

Processing concept

Multi-feed and multi-product based PMN processing concept

- 1. 4 metal (Cu, Ni, Co & Mn) recovery process increases **IRR to 15%**.
- Hybrid processing unit to combine lateritic ore with PMN to reduce financial risk and increase IRR
- Final products are Cu, Ni, Co, MnO₂, Mn alloy and REE
- 4. No established processing technique is available for REE extraction from
 PMN, however, Scandium and
 Thorium are extractable using
 H₂SO₄ leaching.

Southampton

Hazard identification (HAZID)

- HAZID- method
- HAZID- results

Hazard identification - method

Hazard identification:

- Brainstorming session
- Guidewords
- Participants: The 5 Group E members

Focus:

- Major hazards
- Environmental impact
- Proposed concepts

Systems:

- Screw based collector
- Shuttle system
- Combined processing
- PMN mining system as a whole (briefly)

Classification	Description of hazard or environmental impactNone identified.				
1					
2	Known from similar concepts.				
3	Can be estimated from similar concepts.				
4	Unique to this concept. Further studies required to conclude whether it is acceptable.				

Hazard identification - results

S. A.	No. of find 1 2 3		finc	lings	Findings unique (4) to the proposed concepts			
System			4	System	Major hazards	Environmental impact		
Collector	4	-	3	2		-	-Seabed disturbance	
Shuttle	4	_	2	10	Collector		-Plume generation	
		7	1			-Collision with	-Collision with sea animals	
Processing	-	7	I			the surface ship	-Waste into seawater from	
Overall	-	-	1	1	Shuttle	-Collision with basket collection vessel	the buoyancy system	
						- "Runaway" baskets		
						-Toxic gasses in the buoyancy system		
					Processing	-	-Large amount of waste from nodules processing	
					Overall	-	-At-sea dewatering and dryin	

Concluding remarks

- Review the field of polymetallic nodule mining and identify the main areas for development.
- High investment risk prevents commercialisation of polymetallic nodules mining. Technical barriers are one of the contributors to the high investment risk. These include:
 - Downtime of the collector
 - High operating & maintenance cost
 - High processing cost & dependence on nodule supply
- The new conceptual engineering systems of polymetallic nodule mining and processing have been proposed.
 - The screw based new concept of the collector system
 - The new concept of the shuttle system
 - The storage systems, 20FT & 40FT
 - Processing routes for combined marine and laterite ores
- Hazard identification of proposed conceptual systems has been carried out.
 Group *E* co

