

Rachael James

Ocean and Earth Science, University of Southampton, UK R.H.James@soton.ac.uk

Carbon capture and storage (CCS)

worldwide > 60 CCS projects identified 17 active projects Europe:-> offshore storage

Barriers to CCS: CO_2 storage $\rightarrow CO_2$ leakage?

Summary of key findings

- CO_2 leakage was detectable at relatively low flow rates (20–210kg CO_2 d⁻¹):
 - Geophysical imaging (chirp/boomer/multibeam)
 - Biogeochemical sensors (pCO₂/pH/ORP)
 - Direct observation (camera, video, divers)
- CO₂ bubbles were:
 - Easily recorded (pCO₂, hydrophones, imaging)
 - Sensitive to hydrostatic pressure
 - Represented only a fraction (<15 %) of injected CO_2
 - Reached shallower depths than expected
- Pore water and bottom water chemistry was impacted by CO₂ release, but:
 - Limited to release epicentre (~25 m diameter)
 - Quick recovery (within 20 days of termination of release)
 - Dissolution of CaCO₃ buffers pH
- Biological impacts appear to be limited

