Gravitation and Kepler’s Laws

In this chapter we will recall the law of universal gravitatiand will then derive

the result that a spherically symmetric object acts grtwenally like a point mass
at its centre if you are outside the object. Following thiswiklook at orbits under

gravity, deriving Kepler's laws. The chapter ends with asidaration of the energy
in orbital motion and the idea of an effective potential.

3.1 Newton’s Law of Universal Gravitation

For two particles of masses andm, separated by distancéhere is a mutual force

of attraction of magnitude

Gmmy
rz2 '

whereG = 6.67 x 10-1'm3kg~!s 2is thegravitational constantlf Fy,is the force
of particle 2 on particle 1 and vice-versa, and i =r, —r1 is the vector from
particle 1 to particle 2, as shown in figure 3.1, then the wefcion of the law is:
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where the hat (°) denotes a unit vector as usual. Gravity ©bey superposition
principle, so if particle 1 is attracted by particles 2 andl® total force on 1 is
Fio+Fis.

The gravitational force is exactly analogous to the eletaiic Coulomb force
if you make the replacements,— q, —G — 1/41, (of course, masses are always
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Figure 3.1 Labelling for gravitational force between two masses )laftd gravitational
potential and field for a single mass (right).
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3 Gravitation and Kepler's Laws

positive, whereas chargescan be of either sign). We will return to this analogy
later.

Since gravity acts along the line joining the two masses, digentral forceand
thereforeconservativgany central force is conservative — why ?). For a conser-
vative force, you can sensibly defingatential energy differendeetween any two
points according to,

V(re) - V() = —/r_rde-r.

The definition is sensible because the answer depends otiye@ndpoints and not
on which particular path you used. Since odifferencesn potential energy appeatr,
we can arbitrarily choose a particular point, say as a reference and declare its
potential energy to be zer¥,(ro) = 0. If you're considering a planet orbiting the
Sun, it is conventional to s&t = 0 at infinite separation from the Sun, gg| =

o, This means that we can define a gravitational potentialggniey making the
conventional choice that the potential is zero when the tvassas are infinitely
far apart. For convenience, let's put the origin of coortisaat particle 1 and let
r =r,—r1 be the position of particle 2. Then the gravitational foroeparticle 2
due to particle 1 if = Fo; = —Gmmf /r? and the gravitational potential energy

IS,
r r
V(r):—/ Fodr’ = —/ (- S g ST
o0 r

00 r

(The prime(’) on the integration variable is simply to distinguish it fréhe point
where we are evaluating the potential energy.) It is alséulise think of particle
1 setting up a gravitational field which acts on particle Zhvgarticle 2 acting as
a test mass for probing the field. Define t@vitational potential which is the
gravitational potential energy per unit mass, for particley (settingmy = mnow),

Gm

d(r)= .

Likewise, define thgravitational fieldg of particle 1 as the gravitational force per
unit mass:

The use ofy for this field is deliberate: the familigr= 9.81 ms 2 is just the magni-
tude of the Earth’s gravitational field at its surface. Thklfend potential are related
in the usual way:

g=-—0o.

Gravitational Potential Energy Near the Earths’ Surface If you are think-
ing about a particle moving under gravity near the Earthrfase, you might set the
V = 0 at the surface. Here, the gravitational force on a partitleasamis,

F = —mgk,
wherek is an upward vertical unit vector, ap= 9.81ms 2 is the magnitude of

the gravitational acceleration. In componerfis= F, = 0 andF, = —mg Since
the force is purely vertical, the potential energy is indegent ofx andy. We will
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measureas the height above the surface. Applying the definition oépiial energy
difference between heightand the Earth’s surface £ 0), we find

V(h)-V(0) = —/Oh Fdz= —/Oh(—mg)dz: mgh

Choosingz = 0 as our reference height, we 3¢tz=0) = 0 and find the familiar
result for gravitational potential energy,

_ Gravitational potential energy
V() = mgh near the Earth’s surface

Note that since the gravitational force acts verticallyaog path between two given
points the work done by gravity depends only on the changheight between the
endpoints. So, this force is indeed conservative.

3.2 Gravitational Attraction of a Spherical Shell

The problem of determining the gravitational attractionspherically symmetric
objects led Newton to invent calculus: it took him many yeargrove the result.
The answer for a thin uniform spherical shell of matter i¢ thatside the shell the
gravitational force is the same as that of a point mass of #éneestotal mass as
the shell, located at the centre of the shell. Inside thd,sie force is zero. By
considering an arbitrary spherically symmetric objecteédhilt up from thin shells,
we immediately find that outside the object the gravitatiéor@e is the same as that
of a point with the same total mass located at the centre.

We will demonstrate this result in two ways: first by calcirgtthe gravitational
potential directly, and then, making full use of the sphar&ymmetry, using the
analogy to electrostatics and applying Gauss’ law.

3.2.1 Direct Calculation

We consider a thin spherical shell of radismass per unit are@ and total mass
m= 4rpa’. Use coordinates with origin at the center of the shell ancutate the
gravitational potential at a poiftdistance from the centre as shown in figure 3.2.

We use the superposition principle to sum up the individoatigbutions to the
potential from all the mass elements in the shell. All the sniasthe thin annulus
of width ad@ at anglef is at the same distané&from P, so we can use this as our
element of mass: m

dm= p2rasinfadb = 5 sinBde.

The contribution to the potential from the annulus is,

Gdm Gmsin6de
db=-—F-=-7"Rx

Now we want to sum all the contributions by integrating o8drom 0 tort In fact,
it is convenient to change the integration variable fidta R. They are related using
the cosine rule:

R? = r?+a® — 2arcosh.

From this we find si@d8/R = dR/(ar), which makes the integration simple. If
r > athe integration limits are— a andr +a, while if r < athey area—r anda-+-r.
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Figure 3.2 Gravitational potential and field for a thin uniform sphatishell of matter.

We can specify the limits for both cases|as- a| andr + a, so that:

Gm r+a {—Gm/r forr >a

0= "% |r_a|dR: ~Gnya forr<a’

We obtain the gravitational field by differentiating:

_ £/r2 >
g(r):{ Gmi/r2 forr>a
0 forr <a

As promised, outside the shell, the potential is just that pbint mass at the centre.
Inside, the potential is constant and so the force vanishtesimmediate corollaries

are:

¢ A uniform or spherically stratified sphere (so the densitg fsinction of the
radial coordinate only) attracts like a point mass of theesémtal mass at its
centre, when you are outside the sphere;

¢ Two non-intersecting spherically symmetric objects attesmch other like two
point masses at their centres.
3.2.2 The Easy Way

Now we make use of the equivalence of the gravitational faw¢be Coulomb force
using the relabelling summarised in table 3.1. We can nowyapp integral form
of Gauss’ Law in the gravitational case to our sphericallsiiéle law reads,

/g-dS: —4nG/ omdV
S \Y
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Coulomb force Gravitational force
charge q mass m
coupling 1 (410) coupling -G
potential \% potential )
electricfield E=-0V gravitational field g=—-0®
charge density pq mass density Pm
Gauss’ law 0-E = pg/e0 | Gauss’ law 0-g= —41Gpnm

Table 3.1 Equivalence between electrostatic Coulomb force and grigonal force.

rz

Figure 3.3 Coordinates for a two-body system.

which says that the surface integral of the normal compoo€tite gravitational
field over a given surfac8is equal to{—41G) times the mass contained within that
surface, with the mass obtained by integrating the masstgignsover the volume
V contained by,

The spherical symmetry tells us that the gravitational fegglchust be radial,
g=gf. If we choose a concentric spherical surface with radinsa, the mass
enclosed is justn, the mass of the shell, and Gauss’ Law says,

41r’g= —4nGm
which gives
Gm,

immediately. Likewise, if we choose a concentric sphescaface inside the shell,
the mass enclosed is zero apthust vanish.

3.3 Orbits: Preliminaries

3.3.1 Two-body Problem: Reduced Mass

Consider a system of two particles of massgsat positionr, andmy atr inter-
acting with each other by a conservative central force, asvshin figure 3.3. We
imagine these two particle to be isolated from all other irfices so that there is no
external force.

Express the positiony of each particle as the centre of mass locafoplus a
displacemenp; relative to the centre of mass, as we did in equation (1.3)apter 1
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on page 2.

ri=R+py, r2=R+po.
Now change variables from andr, to R andr =r;1 —r». Since the only force
acting is the internal forcé; = F1o= —F»1, between particles 1 and 2, the equations

of motion are:
ml'r'l = |:7 mzi"z = —F.

From these we find, setting = my + my,
MR = myf1 4 mpi'p = 0,

which says that the centre of mass moves with constant ¥glasiwe already know
from the general analysis in section 1.1.1 (see page 2) heardw relative displace-
mentr, we find,

9

1 1)F:m1—|—mz|:

F=f1-fo= (4=
mg e mymy

which we write as,

F=] @

where we have defined tieduced mass

_ My
T mt+mp |

For a conservative force there is an associated potential enewy) and the
total energy of the system becomes

1 ., 1,
E= EMR + Plad +V(r).
This is just an application of the general result we derivedthe kinetic energy
of a system of particles in equation (1.4) on page 3 — we ayregglied it in the
two-particle case on page 3. Likewise, whers central, the angular momentum of
the systemis

L =MRXR4pr xr,

which is an application of the result in equation (1.6) ongag You should make
sure you can reproduce these two results.

Since the center of ma$® moves with constant velocity we can switch to an
inertial frame with origin aR, so thatR = 0. Then we have:

_ 1.0
= SHf '—|-V(r)7 (3.2)
L = urxr.

The original two-body problem reduces to an equivalent lgmobof a single body
of massy at position vector relative to a fixed centre, acted on by the foFce-
—(oV/or)ft.
It's often the case that one of the masses is very much langerthe other, for
example:
Msun 2> Mplanet
Mearth 2> NMatellite
Mproton = Melectron
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If mp > my, thenp=mmy/(mM+-my) ~ my and the reduced mass is nearly equal to
the light mass. Furthermore,

m
R— SR 1171 ~r
m +NMp

and the centre of mass is effectively at the larger mass. dh sases we treat the
larger mass as fixed ap ~ 0, with the smaller mass orbiting around it, and get
equal to the smaller mass. This is sometimes called the “&sdand moving planet
approximation.” We will use this approximation when we gerKepler's Laws.
We will also ignore interactions between planets in congmarito the gravitational
attraction of each planet towards the Sun.

3.3.2 Two-body Problem: Conserved Quantities

Recall that gravity is a central force: the gravitation#iadtion between two bodies
acts along the line joining them. In the formulation of egoas 3.2 above, this
means that the gravitational force on the maasts in the directior-r and therefore
exerts no torque about the fixed centre. Consequently, thid@amomentum vector

L is a constant: its magnitude is fixed and it points in a fixeeaion. Sincd. =

r x p (wherep = pr), we see that is always perpendicular to the plane defined by
the position and momentum of the massAlternatively stated, this means that
andp must always lie in the fixed plane of all directions perpeuatictoL, and can
therefore be described using plane polar coordin@at€s, with origin at the fixed
centre.

For completeness we quote the radial and angular equationstmn in these
plane polar coordinates. We set the reduced mass equal pieitnet’s massn and
write the gravitational force a6 = —kf /r2, wherek = GMmandM is the Sun’s
mass. The equations become (the reader should exerciga¢auee the following
expressions):

F—rg2 = —% radial equation
1d25 — o angular equatian
r dt

The angular equation simply expresses the conservatidmeadiigular momentum
L = mr26.

The second conserved quantity is the total energy, kinétis potential. All
central forces are conservative and in our two-body ortmbl@m the only force
acting is the central gravitational force. We againisetjual to the planet's mass
and write the gravitational potential energyés) = —k/r. Then the expression for
the constant total energy becomes, using plane polar cuaiesi,

E= %mf2—|— %mrzéz— k/r.

In section 3.5 on page 33 we will deduce a good deal of infagnatbout the orbit
straight from this conserved total energy.

3.3.3 Two-body Problem: Examples

Comet A comet approaching the Sun in the plane of the Earth’s odsisiimed
circular) crosses the orbit at an angle of 8@avelling at 50kms?. Its closest ap-
proach to the Sun is/10 of the Earth’s orbital radius. Calculate the comet’s dpee
at the point of closest approach.



28

3 Gravitation and Kepler's Laws

Take a circular orbit of radius, for the Earth. Ignore the attraction of the comet
to the Earth compared to the attraction of the comet to thea®drignore any com-
plications due to the reduced mass.

The key to this problem is that the angular momentusar x p =r x mv of the
comet about the Sun is fixed. At the point of closest approaeltdomet’s velocity
must be tangential only (why?), so that,

|I’ X V| = rmianax.

At the crossing point,
Ir X V| =revsin30.

Equating these two expressions gives,
1
I'minVmax = 0.1reVimax = EreV7

leading to

Cygnus X1 Cygnus X1 is a binary system of a supergiant star of 25 solasgga
and a black hole of 10 solar masses, each in a circular orbiitabeir centre of
mass with period Bdays. Determine the distance between the supergiant and th
black hole, given that a solar mass i99x 10°°kg.

Here we apply the two-body equation of motion, equation)(Bdm page 26.
Labelling the two massas; andny, their separation and their angular velocitgp,
we have,

Gmm,  mm
2 m4m

Rearranging and using the peridd= 21/ w, gives

ro’

3 G(m1‘|‘ m2)T2

41P
_ 6.67x 107 mPkg's72 x (104 25) x 1.99x 10%%kg x (5.6 x 8640042
N 412
= 275x10°m’,

leading tor = 3 x 10%m.

3.4 Kepler's Laws
3.4.1 Statement of Kepler’s Laws
1. The orbits of the planets are ellipses with the Sun at ooesfo

2. The radius vector from the Sun to a planet sweeps out egeas & equal
times.

3. The square of the orbital period of a planet is proportibméhe cube of the
semimajor axis of the planet’s orbit ¢ 0 a3).
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Figure 3.4 Geometry of an ellipse and relations between its paramelerthie polar and
cartesian equations for the ellipse, the origin of coordisés at théocus

3.4.2 Summary of Derivation of Kepler’'s Laws

We will be referring to the properties of ellipses, so figushows an ellipse and its
geometric parameters. The parameters are also expressemthgof the dynamical
quantities: energ¥, angular momenturh, mass of the SuM, mass of the planet
m and the universal constant of gravitati@n The semimajor axia is fixed by the
total energyE and the semi latus rectuhis fixed by the total angular momentum

In general the path of an object orbiting under an inverseusglaw force can
be any conic section. This means that the orbit may be arselliith 0< e <
1, parabola witte = 1 or hyperbola withe > 1. With the definition that the zero
of potential energy occurs for infinite separation, thelteteergy of the system is
negative for an elliptical orbit. When the total energy isazéhe object can just
escape to infinite distance, where it will have zero kinetiergy: this is a parabolic
orbit. For positive energy, the object can escape to infisdggaration with finite
kinetic energy: this gives a hyperbolic orbit. Figure 3lGstrates the possible orbital

29
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Figure 3.5 Different conic sections, showing possible orbits undeingerse square law
force. The figure is drawn so that each orbit has the same @angumentum (samlg but
different energy (the mass of the orbiting object is heldd)xe

shapes.

2nd Law This is the most general and is a statement of angular momeca-
servation under the action of tkentralgravitational force. The angular equation of
motion gives:

. L
r?6 = — = const
m

This immediately leads to,

dA 1, L
— = —r‘6= — =const.
. 2r9 o cons

The 2nd law is illustrated in figure 3.6. An orbiting planetwas along the arc
segment®B andCD in equal times, and the two shaded areas are equal.

Orbit equation The first and third laws are arrived at by finding the equatan f
the orbit. The fact that the orbits are ellipsesjgcificto an inverse square law for
the force, and hence the first and third laws are also spegiéin tnverse square law
force.

Proceed as follows, starting from the radial equation ofiomfwith k= GMm),

k

o A2
f—rogc=—-——.
mr2
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Figure 3.6 lllustration of Kepler's 2nd Law. An orbiting planet moveloag the arc seg-
mentsAB andCD in equal times, and the two shaded areas are equal.

(i) Eliminate® using angular momentum conservatién; L/mr2, leading to a
differential equation for alone:
L2 k

o=
mér3 mr2

(ii) Use the relation
d_pd_Lt d
dt  "de  mr2de’
to obtain derivatives with respect oin place of time derivatives. This gives
a differential equation for in terms of@.

(iii) To obtain an equation which is easy to solve, make thessitutionu= 1/r,
to obtain the orbit equation:

Py mk

@ ti= 1|

1st Law The solution of the orbit equation is

1 mk
== ?(1+ecose),

which for 0< e < 1 gives an ellipse, with semi latus recture: L2/mk This is the
first law.

In figure 3.7 we show the orbit of a hypothetical planet aroth®l Sun with
semimajor axis #27x 10°km (the same as Saturn) and eccentrieity0.56 (bigger
than for any real planet — Pluto has the most eccentric oritit &= 0.25). The
figure also shows how the planet’s distance from the Sungdspreegangular velocity
vary during its orbit.

3rd Law Start with the 2nd law for the rate at which area is swept out,

dA L

dt — 2m’
and integrate over a complete orbital peribdo giveT = 2mA/L, whereA = Tab
is the area of the ellipse. Substituting foin terms ofa gives the third law:

_ 4
 GM

T2 al|.
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Figure 3.7 On the left is shown the orbit of a hypothetical planet arotimel Sun with
distance scales marked in units of?kin. The planet has the same semimajor axis
1.427x 10°km as Saturn, and hence the same periog; 10760 days. The eccentricity is
e=0.56. The three graphs on the right show the planet’s distaoce fhe sun, speed and
angular velocity respectively as functions of time meaduneunits of the orbital period .

Kepler's Procedure® The solution of the orbit equation givess a function of
6, but if you're an astronomer, you may well be interested ioimg 6(t), so that
you can track a planet’s position in orbit as a function ofdinYou could do this
by brute force by combining the angular equation of motich, = L/m, with the
equation giving the orbit,/r = 1+ ecosb, and integrating. This gives a disgusting
integral which moreover leads taas a function oB: you have to invert this, by a
series expansion method, to geas a function ot. This is tedious, and requires
you to keep many terms in the expansion to match the accuraagtmnomical
observations. Kepler himself devised an ingenious gedcadétvay to determine
6(t), and his construction leads to a much neater numerical guveel refer you to
the textbook by Marion and Thorntbfor a description.

13 B Marion and S T Thorntor€lassical Dynamics of Particles and SysteBrsl edition, Harcourt
Brace Jovanovich (1988) p261



3.5 Energy Considerations: Effective Potential 33

3.4.3 Scaling Argument for Kepler’s 3rd Law

Suppose you have found a solution of the orbit equatien;62 = —k/mr?, giving
r and® as functions of. Now scale the radial and time variables by constardaad
[ respectively:

r' =ar, t' = Bt.

In terms of the new variable$ andt’, the left hand side of the orbit equation be-

comes, , _
der! de\2  a 6\2 o . -,
a7 ") =gt ar(g) =t

while the right hand side becomes,

k 1 k
w2 =g )
Comparing the two sides, you can see that we will have a nemtisnlin terms of
r' andt’ providedB? = a3. But this says precisely that if you have orbits of similar
shape, the perio@ and semimajor axia (characterising the linear size of the orbit)
will be related byT? O a3, which is Kepler's third law.
To find the constant of proportionality and show that thetsraie conic sections,

you really have to solve the orbit equation. However, thdisgargument makes
clear how the third law depends on having an inverse-sqoace faw.

3.5 Energy Considerations: Effective Potential

Since the gravitational force is conservative, the totargpE of the orbiting body
is conserved. Writingy (r) for the gravitational potential energy for a moment (so
that we can substitute different forms for the potentiargnéf necessary), we find

1 ., 1 .
E= émr2—|— Emrzez—l—V(r).

Since we know that angular momentum is also conserved (tise fs central), we
can eliminated usingr?6 = L/m, to leave,

1 L2
E=-mi2+——+V(n|
2mr+2mr2+ (r)

Thisis justthe energy equation you would get for a partiobeimg in one dimension
in aneffective potential

LZ

(= i +V(r)|.

The effective potential contains an additiorantrifugal term L?/2mr?, which
arises because angular momentum has to be conserved. Weacaralgood deal
about the possible motion by studying the effective po&dmtithout having to solve
the equation of motion far.

In our case, replaciny (r) by the gravitational potential energy and using
L?/mk, the effective potential becomes (see figure 3.8)

kI k
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positive 1/r 2term
dominates at small r

rp lc la
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Figure 3.8 Effective potentiall (r) = kl/2r? —k/r for motion in an inverse-square law

force.

The allowed motion must havé > 0, so the energy equation says

kI k

If we choose a value for the total enerfgywe can then draw a horizontal line at this
value on the graph df (r), and we know that the allowed motion occurs only where
theU (r) curve liesbelowour chosen value d&.

The minimum possible total energy (for a given angular mamn@h is given by
the minimum of the curve dfl (r). In this situatiorr is constant at

re=1=1%/mk

so the orbit is a circle and the total energyEis- —k/2l = —mie/2L2.

If —k/2l < E < 0, you can see that the motion is allowed for a finite range of
r,rp <r <ra Thisis the case of an elliptical orbit with periheliopand aphelion
ra. You can find the values af, andr, by finding the roots of the equatida =

Kl/2r% —k/r.

If E =0, you see that there is a minimum value fobut that escape to infinity
is just possible. This is the case of a parabolic orbit. Eor 0, escape to infinity
is possible with finite kinetic energy at infinite separationhis is the case of a

hyperbolic orbit.

Orbits in a Yukawa Potential We found that the orbits produced by an inverse-
square law attractive force were ellipses, where the plapetatedly traced the same
path through space. Now consider a force given by the Yukatenpial,

ae—Kr
V(r)=- ; (a>0,k >0).
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Figure 3.9 Left: effective potentiadl (r) =L2/2mr? —ae ™" /rwithm=1,a0 =1,k = 0.24
andL = 0.9. The inset showsl(r) at larger where it has a local maximum (note the
differences in scale, particularly for the valueldf. Right: rosette orbit of a particle with
this effective potential.

Such a potential describes, for example, the force of ditrabetween nucleons in
an atomic nucleus. Of course, in that situation, the proldkould be treated quan-
tum mechanically, but for now, let’s just look at classicedits under the influence
of this potential.

The effective potential is,

L2 ae—Kr
2mr2 ¢

ur)=

To be specific, work in dimensionless units, settmg= 1, a = 1, k = 0.24 and
choosing- = 0.9. The shape of the resulting effective potential as a fonai r is
shown in the left hand part of figure 3.9.

If the total energyE is negative but greater than the minimumufr), then
motion is allowed between a minimum and maximum value of #ugusr. On the
right hand side of figure 3.9 is the trajectory of a partickrtitg at(x,y) = (3,0)
with (v, vy) = (0,0.3) (so thatL = 0.9). Here the particle’s (dimensionless) energy
is —0.117 and the motion is restricted to the regios&b< r < 3, where 0486 and 3
are the two solutions of the equatiorr) = —0.117.

Note that ifk = 0, the Yukawa potential reduces to the same form as the stan-
dard gravitational potential. So, Kr remains small compared to 1 we expect the
situation to be a small perturbation relative to the graiiteal case. In our example,
for the “rosette” orbit on the right of figure 3.9, this is thase, and you can see
that the orbit looks like an ellipse whose orientation skpathanges. This is often
denoted “precession of the perihelion” and is typical oféffect of small perturba-
tions on planetary orbits, for example those due to the &sffetother planets. In
fact, observed irregularities in the motion of Uranus lethdiscovery of Neptune
in 1846. The orientation of the major axis of the Earth’s bdifts by about 104
seconds of arc each century, mostly due the influence ofelugior Mercury, the
perihelion advances by about 574 seconds of arc per ceri@dyseconds of this
can be explained by the Newtonian gravitational interaxtiof the other planets,
while the remaining 43 seconds of arc are famously expldiyeginstein’s general
relativity.

The effective potential shown in figure 3.9 displays anothiresting property.
At larger the L2/2mr? dominates the exponentially falling Yukawa term,$¢r)
becomes positive. In our exampld{r) has a local maximum near= 20. If the
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Figure 3.10 Orbital trajectories for a planet around two equal massstar

total energy is positive, but less than the valudJoét the local maximum, there
are two possibilities for orbital motion. For exampleEit= 0.0003, we find either
0.451<r < 16.31 orr > 36.48. Classically these orbits are distinct, and a particle
with E = 0.0003 which starts out in the inner region can never surmeritiarrier”
inU (r) and so will never be found in> 36.48. In quantum mechanics, however, it
is possible for a particle to “tunnel” through such a barserthat an initially bound
particle has a (small) finite probability of escaping to &rg This is the case for a
process like alpha decay.

3.6 Chaos in Planetary Orbits™

We have shown that a single planet orbiting the Sun followshale closed elliptical
path. You might think that adding one more object to the sysi®uld make the
equations more complicated, but that with patience andtefftu might be able to
figure out a solution for the trajectories. In fact, such aéthbody problem” is
notoriously intractable, and, even today, analytic sohsiare known only in a few
special cases.

In figure 3.10 is shown a numerical solution for a restrictetsion of the three
body problem. The two black dots are stars of equal mass,dtdided positions.
This means that the total energy is conserved, but thatrikediand angular momen-
tum are not conserved since forces and torques have to biedpphold the stars
in place. The solid curve shows the trajectory of a planettitarts out with some
given initial velocity at the point marked by the trianglehél'stars are taken to have
a finite radius and the planet is allowed to pass through thhout suffering any
interaction apart from the gravitational force (this awxs®me numerical instability
when the planet gets very close to a point mass). The contpleikihe solid curve
already hints at the difficulty of this problem.

In fact, the motion is chaotic in the scientific sense. Oneetspf this is shown
by the dashed curve. This is a second solution for a planethwdliso starts out
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at the point marked by the triangle, but has one of its init&bcity components
differing by 0.5% from the corresponding component for th&t iase. You can see
how the paths stay close together for a little while, but ttegridly diverge and show
qualitatively different behaviour. This extreme (expoti@hsensitivity to the initial
conditions is one of the characteristics of chaotic syste@msntrast it to the two
body problem, where a small perturbation to an elliptichitwould simply result
in a new slightly displaced orbit.

For an animated computer simulation of the three body proldescribed here,
together with many other instructive examples of chaotgtays, try the program
Chaos Demonstrationtsy J C Sprott and G Rowlands, available from Physics Aca-
demic Software, http://www.aip.org/pas/.
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