
3
Gravitation and Kepler’s Laws

In this chapter we will recall the law of universal gravitation and will then derive
the result that a spherically symmetric object acts gravitationally like a point mass
at its centre if you are outside the object. Following this wewill look at orbits under
gravity, deriving Kepler’s laws. The chapter ends with a consideration of the energy
in orbital motion and the idea of an effective potential.

3.1 Newton’s Law of Universal Gravitation

For two particles of massesm1 andm2 separated by distancer there is a mutual force
of attraction of magnitude

Gm1m2

r2 ;
whereG= 6:67�10�11m3kg�1s�2 is thegravitational constant. If F12 is the force
of particle 2 on particle 1 and vice-versa, and ifr12 = r2� r1 is the vector from
particle 1 to particle 2, as shown in figure 3.1, then the vector form of the law is:

F12= �F21= Gm1m2

r2
12

r̂12 ;
where the hat (̂ ) denotes a unit vector as usual. Gravity obeys the superposition
principle, so if particle 1 is attracted by particles 2 and 3,the total force on 1 is
F12+F13.

The gravitational force is exactly analogous to the electrostatic Coulomb force
if you make the replacements,m! q,�G! 1=4πε0 (of course, masses are always

m1

m2

r12
F12

F21

r1

r2 m r

F

Figure 3.1 Labelling for gravitational force between two masses (left) and gravitational
potential and field for a single mass (right).
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22 3 Gravitation and Kepler’s Laws

positive, whereas chargesq can be of either sign). We will return to this analogy
later.

Since gravity acts along the line joining the two masses, it is acentral forceand
thereforeconservative(any central force is conservative — why ?). For a conser-
vative force, you can sensibly define apotential energy differencebetween any two
points according to,

V(r f )�V(ri) = �Z r f

ri

Fd�r:
The definition is sensible because the answer depends only onthe endpoints and not
on which particular path you used. Since onlydifferencesin potential energy appear,
we can arbitrarily choose a particular point, sayr0, as a reference and declare its
potential energy to be zero,V(r0) = 0. If you’re considering a planet orbiting the
Sun, it is conventional to setV = 0 at infinite separation from the Sun, sojr0j =
∞. This means that we can define a gravitational potential energy by making the
conventional choice that the potential is zero when the two masses are infinitely
far apart. For convenience, let’s put the origin of coordinates at particle 1 and let
r = r2� r1 be the position of particle 2. Then the gravitational force on particle 2
due to particle 1 isF = F21= �Gm1m2 r̂=r2 and the gravitational potential energy
is,

V(r) =�Z r

∞
F�dr0 = �Z r

∞
(�Gm1m2

r 02 )dr0 = �Gm1m2

r
:

(The prime( 0 ) on the integration variable is simply to distinguish it fromthe point
where we are evaluating the potential energy.) It is also useful to think of particle
1 setting up a gravitational field which acts on particle 2, with particle 2 acting as
a test mass for probing the field. Define thegravitational potential, which is the
gravitational potential energy per unit mass, for particle1 by (settingm1 = m now),

Φ(r) =�Gm
r

:
Likewise, define thegravitational fieldg of particle 1 as the gravitational force per
unit mass:

g(r) = �Gm
r2 r̂ :

The use ofg for this field is deliberate: the familiarg= 9:81ms�2 is just the magni-
tude of the Earth’s gravitational field at its surface. The field and potential are related
in the usual way:

g =�∇∇∇Φ:
Gravitational Potential Energy Near the Earths’ Surface If you are think-
ing about a particle moving under gravity near the Earth’s surface, you might set the
V = 0 at the surface. Here, the gravitational force on a particleof massm is,

F =�mgk̂;
where k̂ is an upward vertical unit vector, andg= 9:81ms�2 is the magnitude of
the gravitational acceleration. In components,Fx = Fy = 0 andFz = �mg. Since
the force is purely vertical, the potential energy is independent ofx andy. We will
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measurezas the height above the surface. Applying the definition of potential energy
difference between heighth and the Earth’s surface (z= 0), we find

V(h)�V(0) =�Z h

0
Fzdz= �Z h

0
(�mg)dz= mgh:

Choosingz= 0 as our reference height, we setV(z=0) = 0 and find the familiar
result for gravitational potential energy,

V(h) = mgh Gravitational potential energy
near the Earth’s surface

Note that since the gravitational force acts vertically, onany path between two given
points the work done by gravity depends only on the changes inheight between the
endpoints. So, this force is indeed conservative.

3.2 Gravitational Attraction of a Spherical Shell

The problem of determining the gravitational attraction ofspherically symmetric
objects led Newton to invent calculus: it took him many yearsto prove the result.
The answer for a thin uniform spherical shell of matter is that outside the shell the
gravitational force is the same as that of a point mass of the same total mass as
the shell, located at the centre of the shell. Inside the shell, the force is zero. By
considering an arbitrary spherically symmetric object to be built up from thin shells,
we immediately find that outside the object the gravitational force is the same as that
of a point with the same total mass located at the centre.

We will demonstrate this result in two ways: first by calculating the gravitational
potential directly, and then, making full use of the spherical symmetry, using the
analogy to electrostatics and applying Gauss’ law.

3.2.1 Direct Calculation

We consider a thin spherical shell of radiusa, mass per unit areaρ and total mass
m= 4πρa2. Use coordinates with origin at the center of the shell and calculate the
gravitational potential at a pointP distancer from the centre as shown in figure 3.2.

We use the superposition principle to sum up the individual contributions to the
potential from all the mass elements in the shell. All the mass in the thin annulus
of width adθ at angleθ is at the same distanceR from P, so we can use this as our
element of mass:

dm= ρ2πasinθadθ= m
2

sinθdθ:
The contribution to the potential from the annulus is,

dΦ =�Gdm
R

= �Gm
2

sinθdθ
R

:
Now we want to sum all the contributions by integrating overθ from 0 toπ. In fact,
it is convenient to change the integration variable fromθ to R. They are related using
the cosine rule:

R2 = r2+a2�2arcosθ:
From this we find sinθdθ=R= dR=(ar), which makes the integration simple. If
r � a the integration limits arer�a andr+a, while if r � a they area� r anda+ r .
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Figure 3.2 Gravitational potential and field for a thin uniform spherical shell of matter.

We can specify the limits for both cases asjr�aj andr +a, so that:

Φ(r) =�Gm
2ar

Z r+ajr�ajdR= ��Gm=r for r � a�Gm=a for r < a
:

We obtain the gravitational field by differentiating:

g(r) =��Gmr̂=r2 for r � a
0 for r < a

:
As promised, outside the shell, the potential is just that ofa point mass at the centre.
Inside, the potential is constant and so the force vanishes.The immediate corollaries
are:� A uniform or spherically stratified sphere (so the density isa function of the

radial coordinate only) attracts like a point mass of the same total mass at its
centre, when you are outside the sphere;� Two non-intersecting spherically symmetric objects attract each other like two
point masses at their centres.

3.2.2 The Easy Way

Now we make use of the equivalence of the gravitational forceto the Coulomb force
using the relabelling summarised in table 3.1. We can now apply the integral form
of Gauss’ Law in the gravitational case to our spherical shell. The law reads,Z

S
g�dS = �4πG

Z
V

ρmdV
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Coulomb force Gravitational force

charge q mass m
coupling 1=(4πε0) coupling �G
potential V potential Φ
electric field E =�∇∇∇V gravitational field g =�∇∇∇Φ
charge density ρq mass density ρm

Gauss’ law ∇∇∇�E = ρq=ε0 Gauss’ law ∇∇∇�g =�4πGρm

Table 3.1 Equivalence between electrostatic Coulomb force and gravitational force.

m1
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ρρρ1
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CM

Figure 3.3 Coordinates for a two-body system.

which says that the surface integral of the normal componentof the gravitational
field over a given surfaceS is equal to(�4πG) times the mass contained within that
surface, with the mass obtained by integrating the mass density ρm over the volume
V contained byS.

The spherical symmetry tells us that the gravitational fieldg must be radial,
g = gr̂. If we choose a concentric spherical surface with radiusr > a, the mass
enclosed is justm, the mass of the shell, and Gauss’ Law says,

4πr2g= �4πGm

which gives

g =�Gm
r2 r̂ for r > a

immediately. Likewise, if we choose a concentric sphericalsurface inside the shell,
the mass enclosed is zero andg must vanish.

3.3 Orbits: Preliminaries

3.3.1 Two-body Problem: Reduced Mass

Consider a system of two particles of massesm1 at positionr1 andm2 at r2 inter-
acting with each other by a conservative central force, as shown in figure 3.3. We
imagine these two particle to be isolated from all other influences so that there is no
external force.

Express the positionri of each particle as the centre of mass locationR plus a
displacementρρρi relative to the centre of mass, as we did in equation (1.3) in chapter 1
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on page 2.
r1 = R+ρρρ1; r2 = R+ρρρ2:

Now change variables fromr1 andr2 to R andr = r1� r2. Since the only force
acting is the internal force,F= F12=�F21, between particles 1 and 2, the equations
of motion are:

m1r̈1 = F; m2r̈2 = �F:
From these we find, settingM = m1+m2,

MR̈= m1r̈1+m2r̈2 = 0;
which says that the centre of mass moves with constant velocity, as we already know
from the general analysis in section 1.1.1 (see page 2). For the new relative displace-
mentr, we find,

r̈ = r̈1� r̈2 = � 1
m1

+ 1
m2

�
F = m1+m2

m1m2
F;

which we write as,
F = µr̈ ; (3.1)

where we have defined thereduced mass

µ� m1m2

m1+m2
:

For a conservative forceF there is an associated potential energyV(r) and the
total energy of the system becomes

E = 1
2

MṘ2+ 1
2

µṙ2+V(r):
This is just an application of the general result we derived for the kinetic energy
of a system of particles in equation (1.4) on page 3 — we already applied it in the
two-particle case on page 3. Likewise, whenF is central, the angular momentum of
the system is

L = M R� Ṙ+µr� ṙ;
which is an application of the result in equation (1.6) on page 7. You should make
sure you can reproduce these two results.

Since the center of massR moves with constant velocity we can switch to an
inertial frame with origin atR, so thatR = 0. Then we have:

E = 1
2

µṙ2+V(r);
L = µr� ṙ: (3.2)

The original two-body problem reduces to an equivalent problem of a single body
of massµ at position vectorr relative to a fixed centre, acted on by the forceF =�(∂V=∂r) r̂.

It’s often the case that one of the masses is very much larger than the other, for
example:

mSun � mplanet;
mEarth � msatellite;

mproton � melectron:
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If m2�m1, thenµ=m1m2=(m1+m2)�m1 and the reduced mass is nearly equal to
the light mass. Furthermore,

R = m1r1+m2r2

m1+m2
� r2

and the centre of mass is effectively at the larger mass. In such cases we treat the
larger mass as fixed atr2 � 0, with the smaller mass orbiting around it, and setµ
equal to the smaller mass. This is sometimes called the “fixedSun and moving planet
approximation.” We will use this approximation when we derive Kepler’s Laws.
We will also ignore interactions between planets in comparison to the gravitational
attraction of each planet towards the Sun.

3.3.2 Two-body Problem: Conserved Quantities

Recall that gravity is a central force: the gravitational attraction between two bodies
acts along the line joining them. In the formulation of equations 3.2 above, this
means that the gravitational force on the massµacts in the direction�r and therefore
exerts no torque about the fixed centre. Consequently, the angular momentum vector
L is a constant: its magnitude is fixed and it points in a fixed direction. SinceL =
r�p (wherep = µṙ), we see thatL is always perpendicular to the plane defined by
the position and momentum of the massµ. Alternatively stated, this means thatr
andp must always lie in the fixed plane of all directions perpendicular toL, and can
therefore be described using plane polar coordinates(r;θ), with origin at the fixed
centre.

For completeness we quote the radial and angular equations of motion in these
plane polar coordinates. We set the reduced mass equal to theplanet’s massm and
write the gravitational force asF = �kr̂=r2, wherek = GMm andM is the Sun’s
mass. The equations become (the reader should exercise to reproduce the following
expressions):

r̈ � r θ̇2 = � k
mr2

radial equation;
1
r

d
dt
(r2θ̇) = 0 angular equation:

The angular equation simply expresses the conservation of the angular momentum
L= mr2θ̇.

The second conserved quantity is the total energy, kinetic plus potential. All
central forces are conservative and in our two-body orbit problem the only force
acting is the central gravitational force. We again setµ equal to the planet’s massm
and write the gravitational potential energy asV(r) =�k=r . Then the expression for
the constant total energy becomes, using plane polar coordinates,

E = 1
2

mṙ2+ 1
2

mr2θ̇2�k=r:
In section 3.5 on page 33 we will deduce a good deal of information about the orbit
straight from this conserved total energy.

3.3.3 Two-body Problem: Examples

Comet A comet approaching the Sun in the plane of the Earth’s orbit (assumed
circular) crosses the orbit at an angle of 60� travelling at 50kms�1. Its closest ap-
proach to the Sun is 1=10 of the Earth’s orbital radius. Calculate the comet’s speed
at the point of closest approach.
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Take a circular orbit of radiusre for the Earth. Ignore the attraction of the comet
to the Earth compared to the attraction of the comet to the Sunand ignore any com-
plications due to the reduced mass.

The key to this problem is that the angular momentumL= r�p = r�mv of the
comet about the Sun is fixed. At the point of closest approach the comet’s velocity
must be tangential only (why?), so that,jr�vj= rminvmax:
At the crossing point, jr�vj = revsin30�:
Equating these two expressions gives,

rminvmax= 0:1revmax= 1
2

rev;
leading to

vmax= 5v= 250kms�1:
Cygnus X1 Cygnus X1 is a binary system of a supergiant star of 25 solar masses
and a black hole of 10 solar masses, each in a circular orbit about their centre of
mass with period 5:6days. Determine the distance between the supergiant and the
black hole, given that a solar mass is 1:99�1030kg.

Here we apply the two-body equation of motion, equation (3.1) from page 26.
Labelling the two massesm1 andm2, their separationr and their angular velocityω,
we have,

Gm1m2

r2 = m1m2

m1+m2
rω2:

Rearranging and using the periodT = 2π=ω, gives

r3 = G(m1+m2)T2

4π2= 6:67�10�11m3kg�1s�2� (10+25)�1:99�1030kg� (5:6�86400s)2
4π2= 27:5�1030m3;

leading tor = 3�1010m.

3.4 Kepler’s Laws

3.4.1 Statement of Kepler’s Laws

1. The orbits of the planets are ellipses with the Sun at one focus.

2. The radius vector from the Sun to a planet sweeps out equal areas in equal
times.

3. The square of the orbital period of a planet is proportional to the cube of the
semimajor axis of the planet’s orbit (T2 ∝ a3).
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Figure 3.4 Geometry of an ellipse and relations between its parameters. In the polar and
cartesian equations for the ellipse, the origin of coordinates is at thefocus.

3.4.2 Summary of Derivation of Kepler’s Laws

We will be referring to the properties of ellipses, so figure 3.4 shows an ellipse and its
geometric parameters. The parameters are also expressed interms of the dynamical
quantities: energyE, angular momentumL, mass of the SunM, mass of the planet
m and the universal constant of gravitationG. The semimajor axisa is fixed by the
total energyE and the semi latus rectuml is fixed by the total angular momentumL.

In general the path of an object orbiting under an inverse square law force can
be any conic section. This means that the orbit may be an ellipse with 0� e<
1, parabola withe= 1 or hyperbola withe> 1. With the definition that the zero
of potential energy occurs for infinite separation, the total energy of the system is
negative for an elliptical orbit. When the total energy is zero the object can just
escape to infinite distance, where it will have zero kinetic energy: this is a parabolic
orbit. For positive energy, the object can escape to infiniteseparation with finite
kinetic energy: this gives a hyperbolic orbit. Figure 3.5 illustrates the possible orbital
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hyperbola

e = 0e < 1
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Figure 3.5 Different conic sections, showing possible orbits under aninverse square law
force. The figure is drawn so that each orbit has the same angular momentum (samel ) but
different energy (the mass of the orbiting object is held fixed).

shapes.

2nd Law This is the most general and is a statement of angular momentum con-
servation under the action of thecentralgravitational force. The angular equation of
motion gives:

r2θ̇ = L
m
= const:

This immediately leads to,

dA
dt

= 1
2

r2θ̇ = L
2m

= const :
The 2nd law is illustrated in figure 3.6. An orbiting planet moves along the arc
segmentsABandCD in equal times, and the two shaded areas are equal.

Orbit equation The first and third laws are arrived at by finding the equation for
the orbit. The fact that the orbits are ellipses isspecificto an inverse square law for
the force, and hence the first and third laws are also specific to an inverse square law
force.

Proceed as follows, starting from the radial equation of motion (with k= GMm),

r̈� r θ̇2 =� k
mr2

:
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D

Figure 3.6 Illustration of Kepler’s 2nd Law. An orbiting planet moves along the arc seg-
mentsAB andCD in equal times, and the two shaded areas are equal.

(i) Eliminate θ̇ using angular momentum conservation,θ̇ = L=mr2, leading to a
differential equation forr alone:

r̈� L2

m2r3 = � k
mr2

:
(ii) Use the relation

d
dt

= θ̇
d
dθ

= L
mr2

d
dθ

;
to obtain derivatives with respect toθ in place of time derivatives. This gives
a differential equation forr in terms ofθ.

(iii) To obtain an equation which is easy to solve, make the substitutionu= 1=r ,
to obtain the orbit equation:

d2u
dθ2 +u= mk

L2 :
1st Law The solution of the orbit equation is

1
r
= mk

L2 (1+ecosθ);
which for 0� e< 1 gives an ellipse, with semi latus rectuml = L2=mk. This is the
first law.

In figure 3.7 we show the orbit of a hypothetical planet aroundthe Sun with
semimajor axis 1:427�109km (the same as Saturn) and eccentricitye= 0:56 (bigger
than for any real planet — Pluto has the most eccentric orbit with e= 0:25). The
figure also shows how the planet’s distance from the Sun, speed and angular velocity
vary during its orbit.

3rd Law Start with the 2nd law for the rate at which area is swept out,

dA
dt

= L
2m

;
and integrate over a complete orbital periodT, to giveT = 2mA=L, whereA= πab
is the area of the ellipse. Substituting forb in terms ofa gives the third law:

T2 = 4π2

GM
a3 :
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Figure 3.7 On the left is shown the orbit of a hypothetical planet aroundthe Sun with
distance scales marked in units of 109km. The planet has the same semimajor axisa =
1:427�109km as Saturn, and hence the same period,T = 10760days. The eccentricity is
e= 0:56. The three graphs on the right show the planet’s distance from the sun, speed and
angular velocity respectively as functions of time measured in units of the orbital periodT.

Kepler’s Procedure� The solution of the orbit equation givesr as a function of
θ, but if you’re an astronomer, you may well be interested in knowing θ(t), so that
you can track a planet’s position in orbit as a function of time. You could do this
by brute force by combining the angular equation of motion,r2θ̇ = L=m, with the
equation giving the orbit,l=r = 1+ecosθ, and integrating. This gives a disgusting
integral which moreover leads tot as a function ofθ: you have to invert this, by a
series expansion method, to getθ as a function oft. This is tedious, and requires
you to keep many terms in the expansion to match the accuracy of astronomical
observations. Kepler himself devised an ingenious geometrical way to determine
θ(t), and his construction leads to a much neater numerical procedure. I refer you to
the textbook by Marion and Thornton1 for a description.

1J B Marion and S T Thornton,Classical Dynamics of Particles and Systems, 3rd edition, Harcourt
Brace Jovanovich (1988) p261
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3.4.3 Scaling Argument for Kepler’s 3rd Law

Suppose you have found a solution of the orbit equation, ¨r � r θ̇2 = �k=mr2, giving
r andθ as functions oft. Now scale the radial and time variables by constantsα and
β respectively:

r 0 = αr; t 0 = βt:
In terms of the new variablesr 0 andt 0, the left hand side of the orbit equation be-
comes,

d2r 0
dt02 � r 0�dθ

dt0�2 = α
β2 r̈�αr

� θ̇
β

�2 = α
β2 (r̈� r θ̇2);

while the right hand side becomes,� k
mr02 = 1

α2

�� k
mr2

�:
Comparing the two sides, you can see that we will have a new solution in terms of
r 0 andt 0 providedβ2 = α3. But this says precisely that if you have orbits of similar
shape, the periodT and semimajor axisa (characterising the linear size of the orbit)
will be related byT2 ∝ a3, which is Kepler’s third law.

To find the constant of proportionalityand show that the orbits are conic sections,
you really have to solve the orbit equation. However, the scaling argument makes
clear how the third law depends on having an inverse-square force law.

3.5 Energy Considerations: Effective Potential

Since the gravitational force is conservative, the total energyE of the orbiting body
is conserved. WritingV(r) for the gravitational potential energy for a moment (so
that we can substitute different forms for the potential energy if necessary), we find

E = 1
2

mṙ2+ 1
2

mr2θ̇2+V(r):
Since we know that angular momentum is also conserved (the force is central), we
can eliminatėθ usingr2θ̇ = L=m, to leave,

E = 1
2

mṙ2+ L2

2mr2
+V(r) :

This is just the energy equation you would get for a particle moving in one dimension
in aneffective potential

U(r) = L2

2mr2
+V(r) :

The effective potential contains an additionalcentrifugal term, L2=2mr2, which
arises because angular momentum has to be conserved. We can learn a good deal
about the possible motion by studying the effective potential without having to solve
the equation of motion forr .

In our case, replacingV(r) by the gravitational potential energy and usingl =
L2=mk, the effective potential becomes (see figure 3.8)

U(r) = kl
2r2 � k

r
:
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Figure 3.8 Effective potentialU(r) = kl=2r2� k=r for motion in an inverse-square law
force.

The allowed motion must have ˙r2� 0, so the energy equation says

E �U(r) = kl
2r2 � k

r
:

If we choose a value for the total energyE, we can then draw a horizontal line at this
value on the graph ofU(r), and we know that the allowed motion occurs only where
theU(r) curve liesbelowour chosen value ofE.

The minimum possible total energy (for a given angular momentum) is given by
the minimum of the curve ofU(r). In this situationr is constant at

rc = l = L2=mk;
so the orbit is a circle and the total energy isE = �k=2l = �mk2=2L2.

If �k=2l < E < 0, you can see that the motion is allowed for a finite range of
r , rp � r � ra. This is the case of an elliptical orbit with perihelionrp and aphelion
ra. You can find the values ofrp andra by finding the roots of the equationE =
kl=2r2�k=r .

If E = 0, you see that there is a minimum value forr , but that escape to infinity
is just possible. This is the case of a parabolic orbit. ForE > 0, escape to infinity
is possible with finite kinetic energy at infinite separation. This is the case of a
hyperbolic orbit.

Orbits in a Yukawa Potential We found that the orbits produced by an inverse-
square law attractive force were ellipses, where the planetrepeatedly traced the same
path through space. Now consider a force given by the Yukawa potential,

V(r) = �αe�κr

r
(α > 0;κ > 0):
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Figure 3.9 Left: effective potentialU(r) = L2=2mr2�αe�κr=r with m= 1,α= 1,κ= 0:24
and L = 0:9. The inset showsU(r) at larger where it has a local maximum (note the
differences in scale, particularly for the value ofU). Right: rosette orbit of a particle with
this effective potential.

Such a potential describes, for example, the force of attraction between nucleons in
an atomic nucleus. Of course, in that situation, the problemshould be treated quan-
tum mechanically, but for now, let’s just look at classical orbits under the influence
of this potential.

The effective potential is,

U(r) = L2

2mr2
� αe�κr

r
:

To be specific, work in dimensionless units, settingm= 1, α = 1, κ = 0:24 and
choosingL = 0:9. The shape of the resulting effective potential as a function of r is
shown in the left hand part of figure 3.9.

If the total energyE is negative but greater than the minimum ofU(r), then
motion is allowed between a minimum and maximum value of the radiusr . On the
right hand side of figure 3.9 is the trajectory of a particle starting at(x;y) = (3;0)
with (vx;vy) = (0;0:3) (so thatL = 0:9). Here the particle’s (dimensionless) energy
is�0:117 and the motion is restricted to the region 0:486� r � 3, where 0:486 and 3
are the two solutions of the equationU(r) =�0:117.

Note that ifκ = 0, the Yukawa potential reduces to the same form as the stan-
dard gravitational potential. So, ifκr remains small compared to 1 we expect the
situation to be a small perturbation relative to the gravitational case. In our example,
for the “rosette” orbit on the right of figure 3.9, this is the case, and you can see
that the orbit looks like an ellipse whose orientation slowly changes. This is often
denoted “precession of the perihelion” and is typical of theeffect of small perturba-
tions on planetary orbits, for example those due to the effects of other planets. In
fact, observed irregularities in the motion of Uranus led tothe discovery of Neptune
in 1846. The orientation of the major axis of the Earth’s orbit drifts by about 104
seconds of arc each century, mostly due the influence of Jupiter. For Mercury, the
perihelion advances by about 574 seconds of arc per century:531 seconds of this
can be explained by the Newtonian gravitational interactions of the other planets,
while the remaining 43 seconds of arc are famously explainedby Einstein’s general
relativity.

The effective potential shown in figure 3.9 displays anotherinteresting property.
At large r the L2=2mr2 dominates the exponentially falling Yukawa term, soU(r)
becomes positive. In our example,U(r) has a local maximum nearr = 20. If the
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Figure 3.10 Orbital trajectories for a planet around two equal mass stars.

total energy is positive, but less than the value ofU at the local maximum, there
are two possibilities for orbital motion. For example, ifE = 0:0003, we find either
0:451� r � 16:31 or r � 36:48. Classically these orbits are distinct, and a particle
with E= 0:0003 which starts out in the inner region can never surmount the “barrier”
in U(r) and so will never be found inr � 36:48. In quantum mechanics, however, it
is possible for a particle to “tunnel” through such a barrier, so that an initially bound
particle has a (small) finite probability of escaping to large r . This is the case for a
process like alpha decay.

3.6 Chaos in Planetary Orbits�
We have shown that a single planet orbiting the Sun follows a simple closed elliptical
path. You might think that adding one more object to the system would make the
equations more complicated, but that with patience and effort you might be able to
figure out a solution for the trajectories. In fact, such a “three body problem” is
notoriously intractable, and, even today, analytic solutions are known only in a few
special cases.

In figure 3.10 is shown a numerical solution for a restricted version of the three
body problem. The two black dots are stars of equal mass, heldat fixed positions.
This means that the total energy is conserved, but that the linear and angular momen-
tum are not conserved since forces and torques have to be applied to hold the stars
in place. The solid curve shows the trajectory of a planet which starts out with some
given initial velocity at the point marked by the triangle. The stars are taken to have
a finite radius and the planet is allowed to pass through them without suffering any
interaction apart from the gravitational force (this avoids some numerical instability
when the planet gets very close to a point mass). The complexity of the solid curve
already hints at the difficulty of this problem.

In fact, the motion is chaotic in the scientific sense. One aspect of this is shown
by the dashed curve. This is a second solution for a planet which also starts out
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at the point marked by the triangle, but has one of its initialvelocity components
differing by 0.5% from the corresponding component for the first case. You can see
how the paths stay close together for a little while, but thenrapidly diverge and show
qualitatively different behaviour. This extreme (exponential) sensitivity to the initial
conditions is one of the characteristics of chaotic systems. Contrast it to the two
body problem, where a small perturbation to an elliptical orbit would simply result
in a new slightly displaced orbit.

For an animated computer simulation of the three body problem described here,
together with many other instructive examples of chaotic systems, try the program
Chaos Demonstrationsby J C Sprott and G Rowlands, available from Physics Aca-
demic Software, http://www.aip.org/pas/.
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