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Abstract— Eigen beamforming is capable of providing useful
beamforming gain in a Multiple-Input Multiple-Output (MIMO)
system when perfect Channel State Information (CSI) is avail-
able. However, when a realistic channel preditor is used to predict
the CSI, a significant performance degradation would incur due
to phase ambiguity inherent in the estimated eigen-vectors. In this
contribution, Coded Modulation (CM) schemes and Differential
CM schemes are employed for assisting the eigen-beamforming
system when employing a minimum mean square error based
channel predictor. It is shown that Differential CM schemes
are capable of assisting the beamforming MIMO system for
attaining a coding gain of about 6.5 dBs when communicating
over correlated Rayleigh fading channels.

I. INTRODUCTION

A transceiver employing multiple transmitters and multiple
receivers is among the most efficient techniques designed for
providing high data rates by exploiting the high channel capac-
ity potential of Multiple-Input Multiple-Output (MIMO) chan-
nels [1], [2]. On one hand, Space-Time Coding schemes [3],
[4] are capable of attaining spatial diversity gains without
needing Channel State Information (CSI) at the transmitter.
On the other hand, transmit beamforming [5], [6] requires near
perfect CSI at the transmitter for computing the beamforming
weight in order to achieve beamforming gain.

For the sake of efficiently exploiting the available radio
spectrum, joint coding and modulation or Coded Modulation
(CM) schemes were first proposed by Ungerböck in 1982 [7]
for non-dispersive Gaussian channels. The benefit of TCM is
that it is capable of achieving a coding gain in comparison
to uncoded transmissions by expanding the modulation phasor
constellation and hence absorbing the parity bits without band-
width expansion, when transmitting over non-dispersive Gaus-
sian channels. Ungerböck’s contribution motivated intensive
research on the topic, especially after the conception of turbo
codes by Berrou et al. [8], leading to Turbo TCM (TTCM)
invented by Robertson and Wörz [9]. Further advances were
made in the context of designing CM schemes for wireless
Rayleigh fading channels by Zehavi [10], by Caire, Taricco
and Biglieri [11] in the context of Bit-Interleaved Coded
Modulation (BICM) as well as by Li and Ritcey [12], leading
to the concept of iteratively decoded BICM (BICMID). Hence,
we will employ TCM, BICM, TTCM and BICMID schemes
for achieving bandwidth efficiency in the eigen beamforming
system.
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A reliable channel predictor is imperative for aiding a
transmit beamforming scheme to achieve its optimal gain.
In this contribution, we will employ the Minimum Mean
Square Error (MMSE) based pilot-symbol aided MIMO chan-
nel predictor [13]–[15]. However, the quality of CSI predicted
by practical channel predictor is still falling short of the
high requirement of an eigen beamforming due to the phase
ambiguity inherent in the estimated eigen-vectors. In order to
mitigate the phase-ambiguity problem differential modulation
will also be invoked.

II. SYSTEM OVERVIEW

Consider a transceiver system having MT transmit antennas
and MR receive antennas communicating over flat Rayleigh
fading channel. The received MR-dimensional symbols vector
y can be expressed as

y = Hx + n (1)

where x is the MT -dimensional transmitted symbol vector
and H is a (MR×MT )-dimensional complex channel matrix,
which is given by

H =


h11 h12 · · · h1M
h21 h22 · · · h2M

...
...

. . .
...

hMR1 hMR2 · · · hMRMT

 (2)

where hij is the channel coefficient between the ith receive
and jth transmit antennas. Furthermore, in (1) n is the MR-
dimensional AWGN vector having a zero-mean and a variance
of E(nnH) = σ2

nIMR
. With the aid of the Singular Value

Decomposition (SVD) [16] the Mr×Mt-dimensional channel
matrix H may be decomposed as:

H = UDVH , (3)

where D is an Mr ×Mt non-negative and diagonal matrix,
while U and V are Mr ×Mr and Mt×Mt unitary matrices,
respectively. Furthermore, the diagonal entries of D are the
non-negative square roots of the eigenvalues of the matrix
HHH .

Figure 1 shows the simplified block diagram of differen-
tial CM assisted eigen beamforming system. A sequence of
information symbols {uk}, where the subscript k denotes the
time index, are first CM-encoded to yield {x′k} before entering
the differential encoder where the sequence {vk} is produced.
At the transmit beamforming block, vk is multiplied by the
beamforming weight vector v(1)k to produce xk, where v(1)k
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Fig. 1. The simplified block diagram of differential CM assisted eigen beamforming system.

is the first column vector of the unitary matrix V computed
using SVD in (3). At the receiver, receive beamforming is
carried out with the aid of a beamforming weight vector of
uH(1)k, which is the conjugate transpose of the first column
vector of the unitary matrix U in (3). Then differential
decoding is carried out followed by CM decoding. By ignoring
the time index k, the signal before the differential decoder can
be simplified as:

r = uH(1)y ,

= uH(1)Hv(1)v + uH(1)kn ,

=
√
λ(1)v + n̆ , (4)

where we have uH(1)Hv(1) = uH(1)UDVHv(1) =
√
λ(1) and

n̆ = uH(1)kn. Note that
√
λ(1) is the first diagonal value of

the matrix D in (3), where λ(1) is the first eigen value of the
matrix HHH . Hence, the transmit and receive beamforming
has converted a MIMO channel into a Single-Input Single-
Output (SISO) channel having a single channel coefficient
given by

√
λ(1). The variance of the Additive White Gaussian

Noise (AWGN) n̆ is the same as that of the original AWGN
n, which is given by N0.

Note however that, when the predicted channel H̃ is not
perfect, the signal subspace defined by the unitary matrices
U and V of (3) is not unique [17]. This is because the
singular vector/matrix can be different up to a complex-valued
coefficient of unit norm [18]. Hence it may cause phase ambi-
guity [18]. One way to resolve this problem is by employing
differential coding [18]. The schematic of differential encoder
is shown in Figure 1 between the CM encoder and the transmit
beamformer. As seen in Figure 1, the symbol vk transmitted
at time instant k is obtained from:

vk = x′kvk−1 , (5)

where x′k is a CM encoded symbol and vk−1 is the symbol
transmitted at time instant (k − 1) [16]. Let us employ PSK-
based CM schemes, where we have |x′k|2 = |vk|2 = 1, and
assume that the channel coefficient

√
λ(1) in (4) is constant

across during the time instant k and (k − 1). With the aid of
(5) and by introducing the time index k to (4), we have:

y′k = rkrk−1 ,

= λ(1)kvkvk−1 +
√
λ(1)kvkn̆k−1 +√

λ(1)k−1vk−1n̆k + n̆kn̆k−1 ,

y′k = λ(1)kx
′
k + n′k . (6)

Hence, an additional differential encoding and decoding pair
in an eigen beamforming scheme is another SISO channel

having a channel coefficient of λ(1)k and an AWGN of n′k =√
λ(1)kvkn̆k−1 +

√
λ(1)k−1vk−1n̆k + n̆kn̆k−1. The variance

of the AWGN n′k can be computed as 2λ(1)kN0, where again
N0 is the variance of the original AWGN in the channel. As
a result, the logarithmic-domain channel soft metric can be
computed at the CM decoder as:

Pr(y′k|x′k = x′(m)) = −
∣∣y′k − λ(1)kx′(m)

∣∣2
2λ(1)kN0

, (7)

where x′(m), for m ∈ {0, 1, . . . ,M − 1}, is the mth phasor in
an M -ary PSK modulation.

III. MIMO CHANNEL PREDICTION

The block diagram of the channel prediction aided differ-
ential CM assisted eigen beamforming system is shown in
Figure 2, where (̃.) denotes the predicted value of (.). Transmit
and receive buffers are used so that a CM-encoded frame may
be partitioned into shorter subframes, where each subframe is
added Mt number of pilot symbols at its beginning. A shorter
subframe symbol length would increase the accuracy of the
channel predictor but would require a higher pilot symbol
overhead. During the transmission of the pilot symbols, only
one transmit antenna is activated during a symbol period while
other transmit antennas are kept silent [13], [14] as seen in
Figure 3.

Let us denote the index of the subframe using the subscript
l and denote ‘subframe’ as ‘frame’ for brevity in this section.
For the lth frame at time instant mt (1 ≤ mt ≤ MT ), the
received signal ymr (l,mt) by the mrth (1 ≤ mr ≤ MR)
receiver antenna is given by:

ymr
(l,mt) = hmrmt

(l,mt)xp + nmr
(l,mt) , (8)

where hmrmt
(l,mt) represents the channel coefficient be-

tween the mtth transmit antenna and mrth receive antenna
for the lth frame at time instant mt while xp represents the
pilot symbol which is assumed to be the same for all transmit
antennas for all frames. Furthermore, nmr (l,mt) is the AWGN
at the mrth receiver antenna for the lth frame at time instant
mt.

With the aid of the Mt-by-Mt pilot symbol matrix as seen in
Figure 3, a MIMO channel prediction problem is decomposed
into a SISO channel prediction case, such that any SISO
prediction algorithm can be applied directly. In this contribu-
tion, MMSE based narrowband channel prediction is invoked.
Specifically, we construct the following p-dimensional vector:

ymr
(l,mt) = [ymr

(l − p+ 1,mt) · · · ymr
(l,mt)]

T , (9)
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u ûx′ y′
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ũH
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Fig. 2. The block diagram of the channel prediction aided differential CM assisted eigen beamforming system.
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Fig. 3. Schematic of MIMO transmission. The notations P , D and 0 denote pilot symbol, data symbol and zero-energy symbol, respectively.

then the predicted channel coefficient ŷmr
(l + 1,mt) of

ymr
(l+1,mt) corresponding to the position of a pilot symbol

is given by [15]:

ŷmr
(l + 1,mt) = d0ymr

(l,mt) , (10)

where d0 is given by:

d0 = R−1ymr (l,mt)
rymr (l,mt)ymr (l+1,mt) , (11)

where Rymr (l,mt) is a (p × p)-dimensional autocorrelation
matrix of ymr

(l,mt), which is given by [15]:

Rymr (l,mt) = E[ymr
(l,mt)y

H
mr

(l,mt)] . (12)

Furthermore, rymr (l,mt)ymr (l+1,mt) is a p-dimensional cross-
correlation vector between ymr

(l,mt) and ymr
(l + 1,mt),

which is given by [15]:

rymr (l,mt)ymr (l+1,mt) = E[y∗mr
(l,mt)ymr

(l + 1,mt)] . (13)

Finally, the predicted channel coefficients corresponding to
the data symbol can be obtained with the aid of linear
interpolation [19].

IV. SIMULATION RESULTS

Let us consider a communication over correlated Rayleigh
fading channels having a normalised Doppler frequency of
10−3 and a subframe length of Ls = 100 data symbols as well
as a frame length of Lf = 1000 data symbols when employing
CM or Differential-coded CM (D-CM) schemes. The number
of transmit antennas is fixed to Mt = 2 and the number of
receive antennas is fixed to Mr = 2. The block diagram of a
non-differential coded CM assisted eigen beamforming system
is the same as that in Figure 1 but without the differential
encoder and decoder blocks.

For the sake of a fair comparison, the CM schemes em-
ployed exhibit a similar decoding complexity in terms of

the number of decoding states and the number of decoding
iterations. For a TCM or BICM code of memory ν, the corre-
sponding complexity is proportional to the number of decoding
states S = 2ν . Since TTCM schemes invoke two component
TCM codes, a TTCM code with t iterations and using an
S-state component code exhibits a complexity proportional to
2.t.S or t.2ν+1. As for BICMID schemes, only one decoder is
used but the demodulator is invoked in each decoding iteration.
However, the complexity of the demodulator is assumed to
be insignificant compared to that of the decoder. Hence, a
BICMID code with t iterations using an S-state code exhibits
a complexity proportional to t.S or t.2M . For these reasons,
we fix S = 64 for TCM and BICM schemes as well as S = 8
and t = 4 for TTCM schemes, while S = 8 and t = 8 for
BICMID schemes. The code polynomials used for the CM
schemes can be found from [20].
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Fig. 4. BER versus Eb/N0 performance of the 4PSK(Lf = Ls = 100)
and CM-8PSK(Lf = 1000, Ls = 100) beamforming schemes, when
communicating over correlated Rayleigh fading channels having a normalised
Doppler frequency of 10−3.



4

Figure 4 shows the Bit Error Ratio (BER) versus Signal-
to-Noise Ratio (SNR) per bit, namely Eb/N0, performance of
the 4PSK and CM-8PSK assisted eigen beamforming schemes
when employing perfect and predicted CSI without differential
coding. As we can see from Figure 4, the performance of the
schemes suffer from significant degradation when the CSI is
imperfect. For example, at BER=10−5 about 8.5 dB and 6.2 dB
of performance loss incurred when employing a predicted
CSI compare to a perfect CSI for the 4PSK and TTCM-
8PSK assisted schemes, respectively. This is due to the phase
ambiguity problem discussed in Section II. Furthermore, the
TCM-8PSK assisted scheme performs worse than the 4PSK
assisted scheme when the CSI is imperfect, at the same
throughput of 2 bit/symbol. Interestingly, in the context of the
eigen beamforming system, BICMID-8PSK assisted schemes
outperformed other CM-8PSK assisted schemes, although
when communicating over SISO Rayleigh fading channels
without beamforming, BICMID-8PSK is outperformed by
TTCM-8PSK scheme [20].
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Fig. 5. BER versus Eb/N0 performance of the D-4PSK(Lf = Ls =
100) and D-CM-8PSK(Lf = 1000, Ls = 100) beamforming schemes, when
communicating over correlated Rayleigh fading channels having a normalised
Doppler frequency of 10−3.

Figure 5 shows the performance of the D-4PSK and D-CM-
8PSK assisted eigen beamforming schemes when employing
perfect and predicted CSI. As we can see from Figure 5,
the performance loss due to employing an imperfect CSI is
only about 2 dB for all cases at BER=10−5. This is because
the differential coding is effective in circumventing the phase
ambiguity problem. However, the employment of differential
coding comes with a price because it increases the noise
variance from N0 to 2λ(1)kN0 as discussed in Section II. As a
result, when the CSI is perfect, the performance of the D-CM-
8PSK schemes in Figure 4 is about 3 dB inferior to that of
the CM-8PSK schemes in Figure 5. However, as we can see
from Figure 6, when the CSI is imperfect, the D-CM-8PSK
schemes performs better than the CM-8PSK schemes despite
having a higher noise variance. For example, the D-BICMID-
8PSK and D-TCM-8PSK schemes perform about 1 dB and
3 dB better than their non-differential coded counterparts at
BER=10−5. Furthermore, the performance of the uncoded
D-4PSK scheme could not outperform the uncoded 4PSK
scheme as evidenced in Figure 5 when the CSI is imperfect.

This shows the importance of CM schemes in a practical
eigen beamforming system. More specifically, the D-BICMID-
8PSK scheme yields a coding gain of about 6.5 dB over
the 4PSK scheme at a BER of 10−5. Note that the CM
schemes employed were originally designed for employment
of non-differential modulation, yet a simple concatenation
with differential coding could still yield some performance
gains in the context of predicted CSI. Hence, a proper design
of differential modulation based CM schemes would yield a
higher coding gain.
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Let us now study the effect of channel fading rates in the
context of Figures 7 and 8, where the normalised Doppler
frequencies of the channels are 10−3 and 10−4, respectively.
As we can see from Figures 7 and 8, when the normalised
Doppler frequencies of the channels is reduced by a factor of
10, it is possible to increase the subframe/frame length by a
factor of 10, while maintaining a similar performance.
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Beamforming schemes, when communicating over correlated Rayleigh fading
channels having a normalised Doppler frequency of 10−3.

Next, let us study the effect of varying the subframe length
at a given frame length of Lf = 10000 of the D-CM-4PSK
assisted eigen beamforming system in Figure 9. As we can see
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from Figure 9, as the subframe length reduces the accuracy
of the channel predictor improves, which resulted in a better
performance at the cost of a higher pilot symbol overhead. As
an example, there are Lf/Ls = 500 subframes of length Ls =
20 data symbols in a Lf = 10000 data symbol frame, resulting
in a pilot symbol overhead of (MtLf/Ls)/(Lf+MtLf/Ls) =
1000/11000, which is about 9%. By contrast, when Lf is fixed
to 10000, the pilot symbol overheads for having Ls = 200 and
Ls = 100 are about 1% and 2%, respectively. From Figure 9,
using Ls = 100 is a good compromise in terms of performance
versus pilot symbol overhead.

V. CONCLUSIONS

In this contribution, we have studied a channel prediction
aided coded modulation assisted eigen beamforming scheme
when communicating over correlated Rayleigh fading chan-
nels. It was shown in Figure 6 that both differential coding
and coded modulation are needed for assisting an eigen
beamforming system when employing a practical channel
predictor. A new coded modulation design using differential
modulation would further improve the performance of an eigen
beamforming system when using a predicted channel state

information.
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