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Background: MIMO

[ Single-Input Single-Output (SISO) channel has limited capacity.

1 Multiple-Input Multiple-Output (MIMO) channel
= Higher capacity than (SISO) channel [1];
— Based on multiple antennas (transmit and/or receive);
= Small mobile unit: correlation of signals.

([ Cooperative Communications
= Virtual MIMO;
= Feasible with a single antenna at each User Equipment (UE);
= User cooperation: independent fading [2].

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunication,
vol. 10, pp. 585-595, Nov—Dec 1999.

[2] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity part |: System description,” IEEE Trans-
actions on Communications, vol. 51(11), pp. 1927—1938, 2003.
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Background: Cooperative Communications

[ Cooperative communications protocols [3,4]:
= Decode-and-Forward: error propagation
= Amplify-and-Forward: noise enhancement
= Compress-and-Forward: error propagation
= (Coded-Cooperation: error propagation

[3]J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols
and outage behavior”, IEEE Transactions on Information Theory, vol. 50, pp. 30623080, Dec. 2004.
[4] A. Host-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless relay channels”, IEEE

Transactions on Information Theory, vol. 51, pp. 20202040, June 2005.
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Background: Classical Codes

d Shannon’s communication theory [5] (1948) states that reliable communication can
be achieved whenever the transmission rate is lower than the channel capacity.

A The quest for near-capacity channel codes has led to various classical codes.
1 Block codes: Hamming codes [6] (1950), Reed-Solomon Codes [7] (1960).
[ Convolutional codes: encoder [8] (1955), Viterbi decoder [9] (1971).

[5] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, pp. 379—427, 1948.

[6] R.W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. Journal, vol. 29, pp. 41-56, 1950.

[7]1.S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Ind. Appl. Math., vol. 8, pp. 300-304, June
1960.

[8] P. Elias, “Coding for noisy channels,” IRE Conv. Rept., pp. 37—47, 1955.

[9] A. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Transactions on Communications,

vol. 19, pp. 751-772, October 1971.
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Background: Concatenated Codes

1 Forney proposed concatenated codes in 1966 [10].

1 Berrou, Glavieux and Thitimajshima invented Turbo codes in 1993 [11].
d Gallager invented LDPC codes in 1962 [12].

d MacKay and Neal revives LDPC codes in 1995 [13].

[10] G. Forney, Concatenated codes. Cambridge: MIT Press, 1966.

[11] C. Berrou and A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes,”
in Proceedings of the International Conference on Communications, (Geneva, Switzerland), pp. 1064—-1070, May 1998.

[12] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21-28, January
1962.

[13] MacKay and Neal, “Good codes based on very sparse matrices,” in IMA: IMA Conference on Cryptography and Coding,
LNCS lately (earlier: Cryptography and Coding Il, Edited by Chris Mitchell, Clarendon Press, 1992), 1995.

UNIVERSITY OF

Southampton




Background and Motivation

Background: More Codes

1 Robertson and Worz proposed Turbo Trellis Coded Modulation (TTCM) in 1995 [14].
1 Loeliger proposed Self Concatenated Convolutional Codes in 1997 [15].

1 Tarokh, Seshadri and Calderbank invented Space-Time Trellis Codes in 1997 [16].
1 Arikan proposed Polar Codes in 2009 [17].

A Distributed coding [18] were proposed for cooperative communications.

[14] P. Robertson and T. Worz, "Coded modulation scheme employing turbo codes,” in Electronics Letters, 31 Aug. 1995.
[15] H.-A. Loeliger, “New turbo-like codes,” in IEEE International Symposium on Information Theory, Ulm, 1997.

[16] V. Tarokh et. al., “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code
Construction,” in Proceeding of IEEE International Conference on Communications, Montreal, Canada, June 1997.

[17] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Mem-
oryless Channels”. IEEE Transactions on Information Theory. 55 (7): 3051-73, 2009.

[18] Y. Li, “Distributed coding for cooperative wireless networks: an overview and recent advances,” IEEE Communications

Magazine, 20009.
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Background: Machine Learning

1 Machine Learning (ML): the design and analysis of algorithms, which enable ma-
chines/computers to learn and solve problems. ML have been developed over the
decades to a state that they are now working really well.

1 ML based AlphaGo has beaten human Go champion in 2017 [19].
[ ML can be used for assisting the next generation wireless networks [20].

1 Research works are continually been done for creating ML based intelligent wireless
networks.

[19] “Google Al defeats human Go champion”, BBE News 25 May 2017.
[20] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen and L. Hanzo, "Machine Learning Paradigms for Next-Generation Wireless

Networks,” in IEEE Wireless Communications, April 2017.
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Motivation

1 Cooperative communications for creating a MIMO channel.
([ Distributed coding for achieving the MIMO channel capacity.

1 Machine learning for code design and wireless system applications.
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Cooperative Communications Models

Figure 1: Single relay model. A source (s), a relay (r) and a destination (d).

The reduced-distance related path gain between node A and node B is given
P

by Gug = (d‘ioB) , Where @ is the pathloss exponent, d, is the reference

distance and dsp is the distance between node A and node B. 2L symbol

periods to transmit L source symbols (x;).
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Cooperative Communications Models

Figure 2: Multiple relays model. 2L symbol periods to transmit L source sym-
bols (xs) and L relay symbols (x,.) to the destination.
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Cooperative Communications models

Figure 3: Successive relaying model. L + 2 (instead of 2L) symbol periods to
transmit L source symbols.
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Cooperative Communications Models

Figure 4: Two ways relaying model. L symbol periods to transmit L /2 source
symbols (x;) and L /2 destination symbols (x4). Network coding is used at the
relay.
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Cooperative Communications Models

Figure 5: Butterfly relaying model. L symbol periods to transmit L /2 source 1
symbols (x,,) and L/2 source 2 symbols (x;,). Network coding is used at the
relay.
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Distributed Coding Schemes

1 Distributed Turbo Codes (DTCs) have been proposed for cooperative com-
munications [21]:

Source Node
Trellis é Trellis :
°® - — Modulator ——™ —> — Modulator ——™
b Encoder 1 | 7 b Encoder 1 | ¢, 1

_ ; Trellis %
Trellis | T e — > Modulator ——™

T — ™ Modulator —™ 5 by Encoder 2 €2 2

b2 Encoder 2 Co T éRe|ay Node :

— Benefits from turbo processing gain;

= Assumption: perfect communication link between the source and relay
nodes.

[21] B. Zhao and M. Valenti, “Distributed turbo coded diversity for relay channel,” Electronics Letters, vol. 39,

pp. 786—787, May 2003.
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Distributed Coding Schemes

d A three-component Distributed Turbo Trellis Coded Modulation (DTTCM)
scheme was proposed in 2009 [22]:

___________________________________
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= Considers an imperfect source-to-relay communication link.

[22] S. X. Ng, Y. Li and L. Hanzo, “Distributed turbo trellis coded modulation for cooperative communications,” in

ICC’09, (Dresden, Germany), 14-18 June 2009.
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Distributed Coding Schemes

[ A three-component Distributed Turbo Trellis Coded Modulation (DTTCM)
scheme was proposed in 2009 [22]:
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[22] S. X. Ng, Y. Li and L. Hanzo, “Distributed turbo trellis coded modulation for cooperative communications,” in

ICC09, (Dresden, Germany), 14-18 June 2009.
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Distributed Coding Schemes

d A two-component Distributed Self-Concatenated Convolutional Coding
(DSECCC) scheme was proposed in 2010 [23]:
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[23] M. F. U. Butt, R. A. Riaz, S. X. Ng and L. Hanzo, "Distributed Self-Concatenated Coding for Cooperative

Communication”, IEEE Transactions on Vehicular Technology, vol. 59, no. 6, July 2010.
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Distributed Coding Schemes

[ Capacity-approaching distributed turbo codes for half-duplex relay system
have been proposed in 2007 [24]:

= Specific to a given network topology.

[ Near-capacity Irregular Distributed Space-Time coding scheme for succes-
sive relaying was proposed in 2010 [25]:
= Suitable for arbitrary relay network configurations.

[24] Z. Zhang and T. Duman, “Capacity-approaching turbo coding for half-duplex relaying,” IEEE Transactions on
Communications, vol. 55, pp. 1895-1906, Oct. 2007.
[25] L. Kong, S. X. Ng, R. G. Maunder and L. Hanzo, "Near-Capacity Cooperative Space-Time Coding Employing

Irregular Design and Successive Relaying”, IEEE Transactions on Communications, August 2010.
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Distributed Coding Schemes

[ Distributed Irregular Convolutional Codes (DIRCCs) was investigated and
proposed for cooperative communications in 2014 [26]:
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[26] S. X. Ng, Y. Li, B. Vucetic and L. Hanzo, "Distributed Irregular Codes Relying on Decode-and-Forward Relays

as Code Components”, IEEE Transactions on Vehicular Technology, 2014.
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Channel Capacity: Direct Link

d Consider a MIMO scheme modelled as:
y = Hx+n, (1)

y € CN-x1 H e CN-XNe x € CNeX n e CN-x1,

[ The capacity of the Discrete-input Continuous-output Memoryless Channel
(DCMC) for a MIMO system using an M-ary PSK/QAM signal set can be
derived as:

M M
1
C = s 03) = ga(40) 3y 3" E o8- exn(W) x|

P(x)
where the exponent ¥, ,, is given by:

 —[[H&™ = x™) 4 n|[* + ||n||?

\Ijm n
’ NO

3)
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Relay Channel Capacity

The upper bound CY and lower bound C* of the relay channel capacity
of the two-hop half-duplex relay network can be computed as:

oY — min{)\C(s_md) ; )\C(S_mg) + (1 — )\)C(r—nl)} , 4)
Ct = min{ACssr); \isa) + (1 =N Clrsay} (5)

where C(,_, ¢ Is the capacity of the channel between the transmitter
at node a and the receivers at both node b and node c. The ratio of
the first transmission period to the total transmission period is given by
A= Ns/(Ns+ Np).
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Conclusions

1 Cooperative communications can create a high-capacity virtual
MIMO channel.

[ Distributed Irregular Convolutional Code (DIRCC) has been intro-
duced and proposed for approaching the virtual MIMO channel
capacity.

A EXIT charts based iterative learning algorithm can be invoked for
creating near-capacity DIRCC schemes.

1 Machine learning can be used for code design and drone location
assigmnet for UAV network.

[ Cooperative communications, distributed coding and machine
learning are the enabling technologies for next generation wire-
less systems.
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Thank you!
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